- •Классификация по направлению потоков
- •Рекуперативные теплообменники
- •Расчёт рекуперативных та
- •Основные уравнения
- •Средний температурный напор
- •Коэффициент теплопередачи
- •Проектировочный (конструкторский) расчёт
- •Проверочный расчёт
- •Сопоставление прямоточной и противоточной схем
- •Определение температур теплообменной поверхности
- •Гидромеханический расчёт теплообменника
- •Оценка эффективности теплообменных аппаратов
- •Контрольные вопросы
- •Теплоотдача при свободной конвекции
- •Уравнения процесса
- •2. Горизонтальные трубы
- •Свободная конвекция в замкнутом объёме
- •1. Вертикальные каналы и щели
- •2. Горизонтальные щели
- •3. Шаровые и цилиндрические прослойки
- •Расчёт теплового потока через слои жидкости методом эквивалентной теплопроводности
- •Контрольные вопросы
- •Теплообмен при кипении
- •Свойства пузырьков пара
- •Кипение в большом объёме Общая картина процесса
- •Температурная кривая и режимы кипения
- •Случай фиксированной температуры стенки
- •Случай фиксированного . Кризисы кипения.
- •Специальные случаи кипения
- •Расчёт кипения в большом объёме
- •Кипение при вынужденном движении жидкости в трубах
- •Особенности
- •Картина процесса в вертикальной трубе
- •Особенности картины кипения в горизонтальных трубах
- •Расчёт теплоотдачи при вынужденном движении с кипаением
- •Контрольные вопросы
- •Теплоотдача при конденсации
- •Виды конденсации
- •Картина и особенности плёночной конденсации Конденсация неподвижного пара на вертикальной стенке
- •Конденсация на трубах и пучках труб
- •Интенсификация теплообмена в конденсаторах
- •Влияние примеси газов на конденсацию
- •Расчёт конденсации
- •Контрольные вопросы
Теплоотдача при конденсации
Конденсацией называется процесс перехода пара (газа) в жидкое или твёрдое состояние (переход в твёрдое состояние – десублимация – здесь рассматриваться не будет).
Конденсация имеет место во многих теплообменных аппаратах (например, в мазутоподогревателях на ТЭС), в опреснительных установках, технологических аппаратах (перегонные аппараты). Важнейшее применение на ТЭС – конденсаторы паровых турбин. В них конденсация происходит на охлаждаемых водой трубах. Для повышения КПД термодинамического цикла ТЭС важно снижать температуру конденсации (за счёт понижения давления), и обычно она близка к температуре охлаждающей воды (до 25÷30°С).
Конденсация – процесс, в определённом смысле обратный к кипению. Но здесь важнее проблемы повышения теплоотдачи, чтобы при малых температурных напорах обеспечить высокий отбор теплоты.
Виды конденсации
Конденсация может происходить в объёме
(туман, дождь) и на охлаждаемой поверхности.
В теплообменных аппаратах – конденсация
на охлаждаемой поверхности. Её далее и
будем рассматривать. Разумеется, при
такой конденсации температура поверхности
стенки
должна быть меньше температуры насыщения
,
то есть
.
В свою очередь, конденсация на охлаждаемой
поверхности может быть двух видов:
Плёночная конденсация – имеет место, когда жидкость смачивает поверхность (жидкость – смачивающая, поверхность – смачиваемая, эти свойства изучаются в курсе Физики), тогда конденсат образует сплошную плёнку.
Капельная конденсация – когда конденсат – несмачивающая жидкость и собирается на поверхности в капли, которые быстро стекают, оставляя почти всю поверхность чистой.
При плёночной конденсации теплоотдача намного меньше из-за термического сопротивления плёнки (плёнка мешает отводу тепла от пара к стенке). К сожалению, реализовать капельную конденсацию сложно – несмачиваемые материалы и покрытия (например, типа фторопласта) сами плохо проводят теплоту. А использование добавок – гидрофобизаторов (для воды типа масла, керосина) оказалось неэффективным. Поэтому обычно в теплообменных аппаратах имеет место пленочная конденсация. Гидрофобизатор, гидрофобность – от греческих “hydör” – “вода” и “phóbos” – страх. То есть гидрофобный – то же, что водоотталкивающий, несмачиваемый. Такие добавки для произвольных жидкостей называются лиофобизаторами.
Картина и особенности плёночной конденсации Конденсация неподвижного пара на вертикальной стенке
Термин “неподвижный пар” в данном случае подразумевает отсутствие существенного вынужденного движения (разумеется, свободно-конвективное движение будет иметь место).
На поверхности стенки образуется плёнка
конденсата. Она стекает вниз, при этом
её толщина растёт благодаря продолжающейся
конденсации (рис. …).
Из-за термического сопротивления плёнки
температура стенки
заметно меньше температуры поверхности
плёнки
,
причём на этой поверхности имеется
небольшой скачок температур конденсата
и пара
(для воды скачок обычно порядка 0,02–0,04
К). Температура пара в объёме
несколько выше температуры насыщения
(рис. …).
Сначала пленка движется стабильно ламинарно – это ламинарный режим. Затем на ней появляются волны (со сравнительно большим шагом, пробегающие по плёнке и собирающие накапливающийся конденсат, так как в более толстом слое в волне скорость движения больше, и такой режим стекания энергетически выгоднее установившегося). Это ламинарно-волновой режим. Далее при большом количестве конденсата режим может стать турбулентным (рис. …).
