
- •Понятие компьютерной графики. Задачи. Основные понятия и определения.
- •Основные направления машинной и компьютерной графики. Деловая графика. Основные направления компьютерной графики
- •Деловая графика
- •Виды компьютерной графики. Растровая графика. Векторная графика. Достоинства и недостатки.
- •Фрактальная графика.
- •Классы программ для работы с растровой графикой. Средства создания и обработки изображений.
- •Разрешение изображения и его размер.
- •Понятие растра. Методы растрирования
- •Rt (Rational-Tangent)-растрирование (растрирование по методу рациональных тангенсов)
- •Суперячейки
- •Растрирование по методу иррациональных тангенсов
- •Частотно-модулированное растрирование
- •Основы теории цвета. Цвет в машинной графике.
- •Основы теории цвета
- •У всех своя правда
- •Излучаемый и отражаемый свет
- •Цветное зрение
- •Метамерия цвета
- •Цветовая температура
- •Цветовая и яркостная адаптация зрения
- •Аддитивная цветовая модель rgb.
- •Числовое представление
- •Субтрактивная цветовая модель cmyk.
- •Преобразование между моделями rgb и cmyk.
- •Цветовая модель hsv.
- •Цветовая модель Lab.
- •Кодирование цвета.
- •Палитра.
- •Палитровые видеорежимы
- •Сравнение с HighColor и TrueColor
- •Индексные палитры.
- •Фиксированная палитра.
- •Безопасная палитра.
- •Алгоритмы вывода графических примитивов. Прямое вычисление координат.
- •Инкрементные алгоритмы. Алгоритм Брезенхэма вывода прямой линии.
- •Джойстики
- •Трекболл (trackball)
- •Тачпад (touchpad) и трекпоинт (trackpoint)
- •Сканеры
- •Дигитайзеры
- •Цифровая фотокамера
- •Принтеры
- •Устройства ввода. Основные характеристики.
- •Устройства ввода графической информации
- •Устройства ввода звуковой информации
- •Устройства ввода текстовой информации
- •Устройства вывода. Основные характеристики.
- •Устройства для вывода визуальной информации
- •Устройства для вывода звуковой информации
- •Устройства для вывода прочей информации
- •Основные геометрические характеристики растра.
- •Принципы формирования изображения на экране.
- •Вертикальная развертка и двойная буферизация.
- •Архитектура современных видеосистем. Видеопамять.
- •Архитектура современных видеосистем. Графический процессор.
- •Архитектура современных видеосистем. Локальная шина.
- •Графические видеорежимы. Эволюция видеоадаптеров.
- •Стандартные графические режимы:
- •Современные стандарты и интерфейсы программирования компьютерной графики.
- •Форматы графических файлов.
- •Векторные форматы
- •Растровые форматы
- •Методы 3d моделирования.
- •Поверхностный метод 3d моделирования.
- •Твердотельный тип 3d моделирования.
- •Алгоритмы вывода графических примитивов. Прямое вычисление координат. Построение линий, окружностей, эллипсов
- •Алгоритм Брезенхэма вывода окружности.
- •Фрактальная графика. Основные характеристики.
- •Программные средства для работы с фрактальной графикой.
- •Понятие фрактала. Фрактал Мандельброта.
- •Площадные фракталы
- •Фракталы на основе метода ifs
- •Свойства фракталов.
Поверхностный метод 3d моделирования.
Поверхностная модель определяется с помощью точек, линий и поверхностей. При построении поверхностной модели предполагается, что технические объекты ограничены поверхностями, которые отделяют их от окружающей среды. Такая оболочка изображается графическими поверхностями. Поверхность технического объекта снова становится ограниченной контурами, но эти контуры уже являются результатом 2-х касающихся или пересекающихся поверхностей.
Точки объектов - вершины, могут быть заданы пересечением 3 поверхностей.
Поверхностное моделирование имеет следующие преимущества по сравнению с каркасным:
1) способность распознавания и изображения сложных криволинейных граней.
2) способность распознавания грани для получения тоновых изображений.
3) способность распознавания особые построения на поверхности (отверстия).
4) возможность получения качественного изображения. Обеспечение более эффективных средств для имитации функционирования роботов.
В основу поверхности положены 2 следующих математических положения:
- любую поверхность можно аппроксимировать многогранником, каждая грань которого является простейшим плоским многоугольником;
- дополнительные поверхности второго порядка и аналитически не описываемые поверхности, форму которых можно определить с помощью интерпретации или аппроксимации.
Типы поверхностей:
Базовые геометрические поверхности:
1. Плоские поверхности, которые можно получить, начертив сначала отрезок прямой, а затем, введя команду, которая разворачивает в 3D пространстве образ этого отрезка на заданное расстояние (получается плоскость или двугранник). Подобным образом разверткой окружностей или дуг могут быть получены цилиндрические и канонические поверхности, области поверхностей также могут быть развернуты в 3D объект (область внутри граней остается пустой).
2. Поверхности вращения. Могут, получены по команде создающей поверхность вращения плоской грани вокруг определенной оси (круговая развертка).
3. Поверхность сопряжения и пересечений. Плавной сопряжение одной поверхности к другой (часто используется). Доступны средства определений пересечений поверхностей.
Возможность построения плавного сопряжения двух поверхностей является наиболее мощным и часто используемым на практике средством поверхностного моделирования. Кроме этого может быть доступно средство определения пересечения поверхности. Например, можно построить плавное сопряжение боковых поверхностей параллелепипеда и цилиндра. Проблема порождения результирующей поверхности в данном случае сводится к задаче построения методом сплайн-интерполяции особых кривых в 3D пространстве, выходящих из квадрата и входящих в автоматически генерируемую кривую на поверхности цилиндра, по которой заданные кривые должны пересекаться.
Твердотельный тип 3d моделирования.
Твердотельное моделирование имеет в своей основе идеологию, которая существенно отличается от идеологии каркасно-поверхностного моделирования. Твердотельная модель представляет собой целостный объект, занимающий замкнутую часть пространства. Всегда можно точно сказать, находится ли точка внутри твердого тела, на его поверхности или вне тела. При изменении в модели любого элемента будут изменяться все другие элементы, которые связаны с ним. В результате изменится форма твердого тела, но сохранится его целостность.
Элементами, из которых строится твердое тело, могут быть: элементы вытягивания (полученные вытягиванием плоского контура перпендикулярно его плоскости); элементы вращения (полученные вращением плоского контура вокруг заданной оси); фаски; скругления; оболочки; ребра жесткости и др. Твердотельный объект строится путем последовательного «добавления» или «вычитания» элементов. Так, если к уже имеющейся твердотельной модели «добавить» элемент вытягивания, то этот элемент образует на модели выступ, а при «вычитании» элемента на модели образуется углубление. Если при построениях доступны одновременно несколько твердотельных объектов, то над любыми двумя твердотельными объектами, пересекающимися в пространстве, можно выполнять булевы операции объединения, вычитания и пересечения.
Твердотельное моделирование предполагает возможность установки параметрических зависимостей между элементами твердого тела или нескольких тел. При этом изменение одного из параметров (например, длины элемента) приводит к соответствующей перестройке всех параметрически связанных элементов. Такое моделирование, называемое параметрическим, дает конструктору дополнительные удобства. Так, можно установить параметрические зависимости между элементами твердотельной сборки и, тем самым, автоматизировать контроль собираемости изделия.
В большинстве современных CAD-систем, имеющих достаточно высокую мощность, обеспечивается возможность одновременной работы с твердотельными объектами и с поверхностями. При этом можно «отрезать» поверхностью часть твердого тела, превращать замкнутый поверхностями объем в твердое тело и т. п. Такое интегрированное моделирование позволяет сочетать простоту твердотельного моделирования с возможностью построения объектов сколь угодно сложной геометрической формы.