
- •А. И. Пятунин
- •1. Числовое программное управление (ч п у)
- •1.1. Устройство станков с чпу
- •1.1.1. Движение исполнительных органов станка
- •1.1.2. Системы координат станков с чпу
- •Прямоугольная система координат
- •Полярная система координат
- •Дополнительные поворотные оси координат
- •1.1.3. Направления движения исполнительных органов станков с чпу Координатная система станка с чпу
- •Координатная система заготовки
- •Рекомендуемая система координат заготовки при фрезерной обработке
- •Рекомендуемая система координат заготовки при токарной обработке
- •1.1.4. Положение и обозначение координатных осей в станках с чпу
- •Направления перемещений в станках с чпу
- •1.1.5. Нулевые и исходные точки станков с чпу
- •Нулевая точка станка m
- •Исходная точка станка r
- •Нулевая точка заготовки w
- •Нулевая точка инструмента e
- •Точка cмены инструмента n
- •1.1.6.. Установка нулевой точки заготовки на токарном станке с чпу
- •Последовательность действий при установке нулевой точки заготовки на токарном станке с чпу
- •1.1.7. Установка нулевой точки заготовки на фрезерном станке с чпу
- •Последовательность действий при установке нулевой точки заготовки на фрезерном станке с чпу
- •Установка нулевой точки заготовки по оси z
- •Установка нулевой точки заготовки по оси X
- •Установка нулевой точки заготовки по оси y
- •1.2. Числовое программное управление станков
- •1.2.1. Траектория движений инструмента
- •1.2.2. Классификации систем чпу
- •2. Программирование обработки на станках с чпу
- •2.1. Основы программирования
- •2.1.1.Составные элементы управляющей программы
- •2.1.2. Кадр управляющей программы
- •Структура управляющей программы
- •2.1.3. Кодирование подготовительных и вспомогательных функций
- •2.2. Технологическая подготовка производства для станков с чпу
- •2.2.1. Особенности проектирования операций для станков чпу
- •2.2.2. Фрезерная обработка на станках с чпу
- •2.2.3. Токарная обработка на станках с чпу
- •2.3. Способы и технические средства подготовки управляющих программ
- •Составление управляющих программ в цехе
- •Составление управляющих программ в специализированном подразделении по программированию
- •Составление управляющих программ в конструкторско-технологическом подразделении
- •Процедура ручного составления управляющих программ
- •3. Автоматизации разработки управляющих программ
- •3.1. Системы автоматизации программирования (сап)
- •3.2. Примеры отечественных сап
- •3.2.1. Система t-flex чпу для станков с чпу
- •Штамповка
- •Обработка кулачков
- •Ремонт и модернизация оборудования с чпу
- •Основные виды сотрудничества с Заказчиками
- •Список типового модернизированного оборудования
- •3.2.2. Программы t-flex nc Tracer для станков с чпу Основные возможности
- •Архитектура системы
- •3.2.3. Система автоматизации программирования - «компас-чпу»
- •4. Разработка технологии, моделирование и подготовка управляющих программ (уп) в adem cam
- •4.1. Интерфейс модуля adem cam 7.0
- •4.1.1. Рабочий стол adem cam 7.0
- •4.1.2. Панели управления adem cam 7.0
- •Чтобы временно исключить технологический объект:
- •Обмен информацией с другими системами (передача файлов)
- •4.2. Создание конструктивных элементов
- •4.2.1. Конструктивные элементы для фрезерных работ Конструктивный элемент “Колодец”
- •Параметры кэ Колодец
- •Параметры дна. Adem cam позволяет Вам задавать следующие параметры дна колодца:
- •Контуры кэ Колодец
- •Параметры контуров
- •Положение материала
- •. Конструктивный элемент “Стенка”
- •Конструктивный элемент “Окно”
- •Конструктивный элемент “Плоскость”
- •Конструктивный элемент “Паз”
- •. Конструктивный элемент «Поверхность»
- •Максимальная и минимальная координаты z
- •Плоскость холостых ходов
- •Конструктивный элемент “Отверстие”
- •Для оптимизации перемещений инструмента:
- •4.2.3. Конструктивные элементы для токарных работ Конструктивный элемент “Торец”
- •Конструктивный элемент “Область”
- •Параметры кэ Область
- •Конструктивный элемент “Резьба”
- •Параметры кэ “Резьба”
- •Задание начальной координаты X
- •Для задания начального диаметра резьбы нажмите кнопку d нач. И укажите начальную точку на экране. Y координата этой точки будет являться диаметром резьбы. Вы можете указать только существующий узел.
- •4.3. Создание технологических переходов
- •4.3.1. Фрезерные переходы
- •Рассмотрим некоторые из них.
- •4.3.1.1. Технологический переход "Фрезеровать 2.5x"
- •Закладка Параметры технологического перехода "Фрезеровать 2.5x"
- •Закладка Дополнительные параметры тп "Фрезеровать 2.5x"
- •Обработка по z
- •Закладка Подход/Отход
- •Отход. Выберите тип отхода из списка и задайте параметры отхода.
- •4.3.1.2. Технологический переход "Фрезеровать 3x"
- •Закладка Параметры технологического перехода "Фрезеровать 3x"
- •Закладка Дополнительные параметры технологического перехода "Фрезеровать 3x"
- •Фрезерные переходы - параметры инструмента
- •Тип инструмента
- •Корректоры
- •Диаметр и радиус
- •Позиция
- •4.3.2.1. Технологический переход «Точить»
- •Закладка Параметры тп “Точить
- •Закладка Дополнительные параметры тп “Точить”
- •Закладка Инструмент
- •4.3.2.2. Технологический переход «Расточить (Токарный)»
- •Закладка Параметры технологического перехода «Расточить (Токарный)»
- •4.4. Формирование технологических команд
- •Технологическая команда «Инструмент»
- •Тип инструмента. Различные типы технологических переходов требуют инструмент различного типа. Например, для выполнения перехода Фрезеровать необходим инструмент фреза, для перехода Пробить — пуансон.
- •Технологическая команда «Безопасная позиция»
- •Технологическая команда «Плоскость холостых ходов»
- •Параметры плоскости холостых ходов
- •Технологические команды “Стоп” и “Останов”
- •Технологическая команда «Отвод»
- •Технологическая команда «Аппроксимация»
- •Технологическая команда «Поворот»
- •. Технологическая команда «Комментарий»
- •Технологическая команда «Вызов подпрограмм»
- •Технологическая команда «Вызов цикла»
- •Технологическая команда «Команда пользователя»
- •Технологическая команда «Ручной ввод»
- •Формирование технологической команды «Ручной ввод»
- •Технологическая команда «Контрольная точка»
- •Формирование технологической команды «Ручной ввод»
- •4.5. Управление и редактирование то
- •4.6. Расчет и моделирование обработки
- •Расчет траектории движения инструмента
- •Генерация управляющей программы
- •Моделирование обработки
- •Плоское моделирование обработки
- •Объемное моделирование обработки
- •4.7. Выбор заготовки
- •Для задания заготовки:
- •Задание заготовки при помощи координат для фрезерной обработки
- •Задание заготовки при помощи контура для токарной обработки
- •Литература
- •Техтран - система программирования оборудования с чпу/ а.А. Алферов, о.Ю. Батунер, м.Ю. Блюдзе и др. – л.: Машиностроение, Ленингр. Отд., 1987
- •Приложения
- •Приложение №2 – Подготовительные и вспомогательные функции
- •Подготовительные функции
- •Вспомогательные функции
- •М00 Остановка программы
- •Приложение №3 – Подготовительные и вспомогательные функции системы управления ge Fanuc 21t (Токарная)
- •Приложение №4 – Просмотр файла cldata Для просмотра файла cldata нажмите кнопку – Просмотр cldata на панели «Постпроцессор». Ниже показан пример такого файла.
- •Приложение №5 – Просмотр Управляющей Программы
Установка нулевой точки заготовки по оси X
При помощи ручного управления или соответствующих клавиш на пульте станка переместить рабочий инструмент вверх по оси Z на высоту, исключающую его соприкосновение с заготовкой.
Переместить заготовку вдоль оси X в сторону отрицательных значений координат в положение, при котором диаметральный габарит режущей части рабочего инструмента с гарантированным зазором выходит за габарит заготовки в указанном направлении.
Переместить рабочий инструмент по оси Z вниз до положения, при котором режущая часть инструмента будет расположена ниже верхней плоскости заготовки.
Осторожно подвести рабочий инструмент по оси X к боковой поверхности заготовки, коснуться поверхности заготовки вершиной режущей части инструмента до появления заметного визуально следа и остановить перемещение инструмента.
Определить по системе индикации ЧПУ текущее значение положения шпинделя станка по оси X.
Пересчитать данное значение координаты с учетом радиуса режущей части инструмента и внести полученное значение в систему ЧПУ в качестве смещения нуля отсчета. Например, если радиус фрезы равен 15 мм, то в систему ЧПУ вносится значение Xw = - 15.
Нажать клавишу обнуления системы отсчета координат на пульте управления станка.
Установка нулевой точки заготовки по оси y
Порядок установки нулевой точки заготовки по оси Y полностью идентичен порядку установки по оси X.
Примечание: если по каким-либо причинам контакт режущего инструмента с заготовкой при установке нулевых точек должен быть исключен, то настройка производится при выключенном шпинделе с помощью концевых мер длины или измерительных индикаторов.
1.2. Числовое программное управление станков
1.2.1. Траектория движений инструмента
Любую траекторию перемещения, которую должен пройти режущий инструмент при механообработке, можно разложить на элементарные перемещения из отрезков прямых линий и дуг окружности. Такие перемещения в ЧПУ называются интерполяциями (от латинского слова interpolatio – «обновление», «изменение»). Все производимые в настоящее время системы ЧПУ оснащаются специальным электронным блоком – интерполятором, благодаря которым они имеют способность управлять взаимным перемещением инструмента и заготовки по прямой линии или по окружности путем автоматического расчета промежуточных точек траектории выполняемого перемещения.
Современные изделия, производимые на станках с ЧПУ, отличаются разнообразной и сложной формой, часто состоящей из параболических, винтовых или сплайновых поверхностей (сплайн – это гладкая кривая, которая проходит через заданный набор точек в прямоугольной системе координат). Каждую такую поверхность также можно представить в виде сочетания элементарных отрезков прямых линий и круговых дуг. Но при этом количество элементарных перемещений становится неоправданно большим, а управляющая программа громоздкой и сложной (объем такой управляющей программы может составить больше 100 мегабайт и более). Для того чтобы многократно уменьшить и упростить управляющую программу по обработке поверхностей сложной формы, системы ЧПУ большинства современных станков оснащаются не только линейными и круговыми интерполяторами, но и винтовыми, параболическими, сплайновыми и т.п.
Если на станке с ЧПУ необходимо выполнить прямолинейное перемещение инструмента (линейную интерполяцию) вдоль одной из осей координат станка, то такое перемещение система ЧПУ исполняет включением привода подач по данной оси, а по другим осям привод подач не включается. Если же необходимо выполнить круговую интерполяцию или линейную интерполяцию в направлении, непараллельном какой-либо оси координат, то механизм работы системы ЧПУ существенно усложняется.
В этом случае система ЧПУ реализует перемещение инструмента при помощи аппроксимации. Под аппроксимацией в теории ЧПУ понимается замена одной функциональной зависимости на другую более простую функцию с определенной степенью точности. В данном случае аппроксимация сводится к тому, что вместо одного прямолинейного перемещения или перемещения по дуге от исходной точки до точки с заданными координатами система ЧПУ задает инструменту перемещения по ломаной линии, элементарные отрезки которой параллельны координатным осям.
На рис. 1.26 показан случай прямолинейного перемещения режущего инструмента (линейная интерполяция), на рис. 1.27 – аппроксимация данного перемещения системой ЧПУ станка. На рис. 1.28 - случай перемещения режущего инструмента по дуге окружности (круговая интерполяция), на рис. 1.29 – его аппроксимация.
Рис. 1.26. Прямолинейное перемещение режущего инструмента (линейная интерполяция) |
Рис. 1.27. Аппроксимация линейной интерполяции |
Рис. 1.28. Перемещение режущего инструмента по дуге (круговая интерполяция) |
Рис. 1.29. Аппроксимация круговой интерполяции |
На рисунках 1.27 и 1.29 линиями от точки a до точки b показаны траектории перемещения инструмента, заданные управляющей программой. Отрезками от X1 до Xi и от Y1 до Yi показаны замены заданного перемещения на элементарные перемещения соответственно вдоль координатных осей X и Y. Как видно из изображений элементарные перемещения не всегда одинаковы по своей величине в процессе одного заданного перемещения. Система ЧПУ сама определяет величину каждого элементарного перемещения, исходя из двух условий:
отклонение траектории элементарного перемещения от траектории заданного перемещения не должно превышать установленную программой величину аппроксимации (общепринятым считается погрешность аппроксимации равная 15-25% всего поля допуска на неточность обработки данного размера);
элементарные перемещения вдоль разных координатных осей должны быть так согласованы между собой, чтобы они одновременно начались в исходной точке и прекратились так же одновременно при достижении конечной точки заданного перемещения.