
- •1.Перемещение. Линейная и угловая скорость.
- •2.Вращательное движение. Линейное и угловое ускорение
- •Равномерное вращательное движение: за любые равные промежутки времени тело поворачивается на одинаковые углы.
- •5.Импульс. Закон сохранения импульса.
- •7. Консервативные силы. Потенциальная энергия материальной точки
- •8. Потенциальная энергия взаимодействия
- •9. Момент силы. Момент импульса. Закон сохранения момента импульса.
- •10. Неинерциальные системы отсчета. Силы инерции.
- •11. Движение центра масс твердого тела.
- •12. Момент инерции твердого тела. Теорема Штейнера.
- •13. Кинетическая энергия твердого тела. Плоское движение твердого тела.
- •14. Постулаты Специальной теории относительности. Понятие одновременности в сто.
- •15. Преобразования Галилея и Лоренца
- •16. Следствия из Преобразований Лоренца
- •17. Преобразование скоростей в сто.
- •18. Принцип относительности. Законы сохранения в сто.
- •19. Уравнения движения в механике сто.
- •20. Импульс и энергия в сто
- •21. Релятивистские эффекты в сто
- •22. Закон Всемирного Тяготения
- •23. Гравитационное поле
- •24. Гармонические колебания
- •25. Энергия колебаний
- •26. Векторная диаграмма. Сложение колебаний.
- •27. Затухающие колебания. Вынужденные колебания. Резонанс.
- •2. Первое начало термодинамики
- •3. Внутренняя энергия и теплоемкость идеального газа
- •4. Работа, совершаемая газом при изменениях объема
- •5. Уравнение состояния идеального газа
- •6. Основные изопроцессы. Внутренняя энергия.
- •7. Адиабатический процесс
- •8. Политропические процессы
- •9. Работа, совершаемая газом при изопроцессах.
- •10. Давление и температура идеального газа.
- •11. Степени свободы
- •12. Вероятность. Средние значения.
- •17. Барометрическая формула
- •18. Второе начало термодинамики.
- •19. Микро- и макросостояния. Статистический вес
- •23. Цикл Карно.
- •26. Фазовые переходы. Уравнение Клайперона-Клаузиуса.
- •27. Диаграммы состояния вещества.
13. Кинетическая энергия твердого тела. Плоское движение твердого тела.
Кинетическая
энергия твердого тела представляет
собой сумму кинетических энергий
отдельных частиц:
,
где - скорость центра масс тела, -
скорость i-й частицы относительно системы
координат, связанной с центром масс и
совершающей поступательное движение
вместе с ним. Возводя сумму скоростей
в квадрат, получим:
так
как
(суммарный импульс частиц в системе
центра масс равен нулю). Таким образом,
кинетическая энергия при плоском
движении равна сумме кинетических
энергий поступательного и вращательного
движений (теорема Кенига). Если
рассматривать плоское движение как
вращение вокруг мгновенной оси, то
кинетическая энергия тела есть энергия
вращательного движения.
В этой связи задачу о скатывании цилиндра с наклонной плоскости можно решить, используя закон сохранения механической энергии (напомним, что сила трения при качении без проскальзывания работу не совершает).
Приращение
кинетической энергии цилиндра равно
убыли его потенциальное энергии:
Здесь
- длина наклонной плоскости,
- момент инерции цилиндра относительно
мгновенной оси вращения.Поскольку
скорость оси цилиндра
то
.
Дифференцируя обе части этого уравнения
по времени, получим ,
откуда
для линейного ускорения оси цилиндра
будем иметь то же выражение, что и при
чисто динамическом способе решения
14. Постулаты Специальной теории относительности. Понятие одновременности в сто.
СТО полностью выводится на физическом уровне строгости из двух постулатов (предположений):
Справедлив принцип относительности Эйнштейна — расширение принципа относительности Галилея.
Скорость света не зависит от скорости движения источника во всех инерциальных системах отсчёта.
Формулировка второго постулата может быть шире: «Скорость света постоянна во всех инерциальных системах отсчёта», но для вывода СТО достаточно его исходной формулировки Эйнштейном, записанной выше. Приписывание постулатов Эйнштейну правомерно в той степени, что до его работы эти уже сформулированные отдельно друг от друга (в частности, А. Пуанкаре) утверждения в совокупности явным образом никем не рассматривались.
Иногда в постулаты СТО также добавляют условие синхронизации часов по А. Эйнштейну, но принципиального значения оно не имеет: при других условиях синхронизации лишь усложняется математическое описание экспериментальной ситуации без изменения предсказываемых и измеряемых эффектов (см. по этому поводу работы в списке литературы).
Экспериментальная проверка постулатов СТО в известной степени затруднена проблемами философского плана: возможностью записи уравнений любой теории в инвариантной форме безотносительно к её физическому содержанию, и сложности интерпретации понятий «длина», «время» и «инерциальная система отсчёта» в условиях релятивистских эффектов.
Тем не менее, опора на достижения экспериментальной физики позволяет утверждать, что в пределах своей области применимости — при пренебрежении эффектами гравитационного взаимодействия тел, СТО является справедливой с очень высокой степенью точности (до 10−12 и выше).
Относительность понятия одновременности (два события происходят одновременно по часам в одной системе отсчета, но в разные моменты времени по часам в другой системе отсчета).