Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция Диоды.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
375.3 Кб
Скачать

11 Диод Ганна

Диод Ганна (изобретён Джоном Ганном в 1963 году) — тип полупроводниковых диодов, использующийся для генерации и преобразования колебаний в диапазоне СВЧ. В отличие от других типов диодов, принцип действия диода Ганна основан не на свойствах p-n-переходов, а на собственных объёмных свойствах полупроводника.

Вольт-амперная характеристика диода Ганна

Традиционно диод Ганна состоит из слоя арсенида галлия толщиной от единиц до сотен микрометров с омическими контактами с обеих сторон. В этом материале в зоне проводимости имеются два минимума энергии, которым соответствуют два состояния электронов — «тяжёлые» и «лёгкие». В связи с этим с ростом напряжённости электрического поля средняя дрейфовая скорость электронов увеличивается до достижения полем некоторого критического значения, а затем уменьшается, стремясь к скорости насыщения.

Таким образом, если к диоду приложено напряжение, превышающее произведение критической напряжённости поля на толщину слоя арсенида галлия в диоде, равномерное распределение напряжённости по толщине слоя становится неустойчиво. Тогда при возникновении даже в тонкой области небольшого увеличения напряжённости поля электроны, расположенные ближе к аноду, «отступят» от этой области к нему, а электроны, расположенные у катода, будут пытаться «догнать» получившийся движущийся к аноду двойной слой зарядов. При движении напряжённость поля в этом слое будет непрерывно возрастать, а вне его — снижаться, пока не достигнет равновесного значения. Такой движущийся двойной слой зарядов с высокой напряжённостью электрического поля внутри получил название домена сильного поля, а напряжение, при котором он возникает — порогового.

В момент зарождения домена ток в диоде максимален. По мере формирования домена он уменьшается и достигает своего минимума по окончании формирования. Достигая анода, домен разрушается, и ток снова возрастает. Но едва он достигнет максимума, у катода формируется новый домен. Частота, с которой этот процесс повторяется, обратно пропорциональна толщине слоя полупроводника и называется пролетной частотой.

При помещении диода Ганна в резонатор возможны другие режимы генерации, при которых частота колебаний может быть сделана как ниже, так и выше пролетной частоты. Эффективность такого генератора относительно высока, но максимальная мощность не превышает 200—300мВт.

Наряду с арсенидом галлия для изготовления диодов Ганна также используется фосфид индия (до 170 ГГц) и нитрид галлия (GaN) на котором и была достигнута наиболее высокая частота колебаний в диодах Ганна — 3 ТГц.

12 Туннельный диод

Обозначение на схемах

Вольт-амперная характеристика туннельного диода. В диапазоне напряжений от U1 до U2 дифференциальное сопротивление отрицательно.

Устройство туннельного диода

Обычные диоды при увеличении прямого напряжения монотонно увеличивают пропускаемый ток. В туннельном диоде квантово-механическое туннелирование электронов добавляет горб в вольтамперную характеристику, при этом, из-за высокой степени легирования p и n областей, напряжение пробоя уменьшается практически до нуля. Туннельный эффект позволяет электронам преодолеть энергетический барьер в зоне перехода с шириной 50..150 Å при таких напряжениях, когда зона проводимости в n-области имеет равные энергетические уровни с валентной зоной р-области. При дальнейшем увеличении прямого напряжения уровень Ферми n-области поднимается относительно р-области, попадая на запрещённую зону р-области, а поскольку тунелирование не может изменить полную энергию электрона, вероятность перехода электрона из n-области в p-область резко падает. Это создаёт на прямом участке вольт-амперной характеристики участок, где увеличение прямого напряжения сопровождается уменьшением силы тока. Данная область отрицательного дифференциального сопротивления и используется для усиления слабых сверхвысокочастотных сигналов.

История изобретения туннельного диода

Туннельный диод был изготовлен в 1958 году Лео Эсаки, который в 1973 году получил Нобелевскую премию по физике за экспериментальное обнаружение эффекта туннелирования электронов в этих диодах.

Применение туннельного диода

Наибольшее распространение на практике получили туннельные диоды из Ge, GaAs, а также из GaSb. Эти диоды находят широкое применение в качестве генераторов и высокочастотных переключателей, они работают на частотах, во много раз превышающих частоты работы тетродов, — до 30-100 ГГц.

12 Селеновый выпрямитель

Селе́новый выпрями́тель (селеновый вентиль) — полупроводниковый диод на основе селена.

Устройство селенового выпрямителя

Структура селенового выпрямителя

Селеновый выпрямитель состоит из алюминиевой или железной пластины, покрытой с одной стороны слоем кристаллического селена (50 — 60 мкм), являющимся одним из электродов с дырочной (p-тип) проводимостью. Для создания второго электрода на поверхность селена наносится сплав из олова, кадмия и висмута. При вступлении в реакцию (диффузия) селена и кадмия образуется тонкий слой селенида кадмия с электронной (n-тип) проводимостью. На границе между селеном селенидом кадмия образуется p—n-переход. Для улучшения свойств селеновые пластины подвергают электрической формовке путём длительного приложения постоянного напряжения в обратном направлении.

Пластины селеновых выпрямителей могут быть круглой и прямоугольной формы с центральным отверстием для сборки в столбы или без него.