
- •Рабочая программа учебной дисциплины «разработка управленческого решения»
- •061100 – «Менеджмент организации»
- •521500 – Направление «Менеджмент». Степень – бакалавр;
- •521500 – Направление «Менеджмент».
- •Цели и задачи дисциплины
- •Форма контроля
- •Содержание дисциплины
- •Тематический план учебной дисциплины (распределение часов)
- •Тематика практических занятий
- •Тема 1. Функции решения в методологии и организации процесса управления.
- •Тема 2. Модели, методология и организация процесса разработки управленческого решения.
- •Тема 10. Влияние внешней среды и человеческого фактора на процесс принятия решения.
- •Рекомендуемая литература Основная
- •Дополнительная
- •Методические указания к выполнению контрольных работ
- •Порядок выполнения работы
- •Задания контрольных работ
- •План контрольной работы
- •Возможные ситуации
- •Список рекомендованной литературы Основная
- •Дополнительная
- •Курс лекций учебной дисциплины «разработка управленческих решений» полные тексты лекция, разбитые по темам Лекция 1
- •Тема 1. Функции решения в методологии и организации процесса управления
- •Характеристика процессов управления
- •Общая характеристика проблем, задач и решений.
- •Понятие и содержание управленческих решений
- •Типология управленческих решений
- •Информация и информационные технологии в управлении организациями
- •Контрольные вопросы для самопроверки:
- •Литература:
- •Лекция 2.
- •Тема 2. Модели, методология и организация процесса разработки управленческого решения
- •Тема 3. Процесс принятия решений
- •Формулировка
- •2. Условия неопределённости и риска
- •3. Прием разработки и выбора управленческих решений в условиях неопределенности и риска
- •Контрольные вопросы для самопроверки
- •Литература
- •Лекция 5
- •Тема 4. Разработка альтернатив действий
- •Составление списков альтернатив
- •Дерево решений (вариантов)
- •Морфологическая комбинационная таблица
- •Причинно-следственная диаграмма (диаграмма Исикавы)
- •Решение 2
- •Математическое описание множества вариантов
- •Коллективный поиск вариантов
- •Контрольные вопросы самопроверки
- •Литература
- •Лекция 6 Тема 5. Анализ альтернатив действий
- •Случайный выбор
- •Интуитивные решения
- •Решения, основанные на суждениях
- •Решения на основе максим (основных правил, принципов)
- •Решения на основе функций приоритетов
- •Графические методы анализа вариантов
- •Лекция 7
- •Дерево решений (вариантов)
- •8. Таблицы оценок
- •Оценка по сумме безразмерных критериев
- •Тема 6. Математические модели принятия решений
- •Входящие потоки
- •Очереди
- •Очередь
- •3. Задача упорядочения и согласования
- •Время простоя определяется графически
- •4. Задача о назначении.
- •Модели линейного программирования Общая линейная распределительная задача
- •Метод последовательных уступок
- •Литература
- •Тема 7. Коллективное принятие решений
- •Принятие решений голосованием
- •2. Принятие коллективных решений в малых группах
- •3. Конференции по принятию решений
- •4. Экспертные системы принятия решений
- •Тема 8. Эффективность решений
- •1.Задача оценки эффективности решения
- •2. Математические методы оценки последствий решения
- •Экспертные методы оценки последствий решения
- •Тема 9. Реализация и контроль исполнения решения
- •Контроль реализации управленческих решений
- •Решение о внедрении нового изделия
- •Управленческие решения и ответственность
- •Лекция 15
- •Тема 10. Влияние внешней среды и человеческого фактора на процесс принятия решения
- •Анализ внешней среды и ее влияния на реализацию альтернатив
- •Основные термины и понятия
- •Материалы для тестовой системы
3. Задача упорядочения и согласования
Детерминированная задача упорядочения
Постановка задачи и выбор критерия оптимизации
Пусть имеется несколько изделий, каждое из которых должно быть обработано на двух машинах. Допустим, что известны время обработки и последовательность обработки каждого изделия на каждой машине (Таб.1)
Таблица 1
Номер издания |
j |
1 |
2 |
3 |
4 |
5 |
6 |
Время обработки на первой машине |
t1j |
6 |
4 |
6 |
5 |
7 |
4 |
Время обработки на второй машине |
t2j |
5 |
2 |
3 |
6 |
6 |
7 |
Требуется выбрать такой порядок обработки изделий, при котором суммарное время обработки изделий будет минимальным (или суммарное время ожидания обработки изделий на машине).
Основные особенности, взаимосвязи и количественные закономерности.
Основные ограничения задачи:
Время перехода изделия от одной машины к другой незначительно и им можно пренебречь;
Каждое изделие обрабатывается в определенном технологическом порядке;
Каждое обслуживание должно быть завершено прежде, чем начнется следующее.
Обозначения:
t1i – время обработки i – го изделия на первой машине;
t2i – время обработки i – го изделия на второй машине.
Изобразим процесс обработки изделий на двух машинах графически:
-
Время обработки на
Машине 1
t11=6 t12=4 t13=6 t14=5 t15=7 t16=4
Время обработки на
Машине 2
Время простоя
Машин 2
t21=5 t22=2 t23=3 t24=6 t25=6 t26=7
tn1 tn2 tn3 tn4
T
Рис.1.
Т – полное время, которое пройдет от начала обработки первого изделия на первой машине до конца обработки последнего изделия на второй машине.
Построение математической модели.
Пусть
–
время простое второй машины между концом
выполнения работы по обработке
– го изделия на второй машине и началом
обработки
– го изделия на той же самой машине.
Тогда суммарное время обработки изделий составит
,
а так
как сумма
известна, то надо минимизировать
(
в нашем случае
).
Исследование математической модели.
Известен весьма простой алгоритм для
нахождения оптимальной последовательности
порядка обслуживания
требований на двух пунктах обслуживания
(алгоритм Джонсона). При этом каждое из
требований должно пройти сначала
обслуживание на первом пункте, затем
на втором.
Продолжительности обслуживания требований различны. Если использовать метод прямого перебора, то при наличии m требований (изделий) и двух пунктов обслуживания (машин) и при условии, что все виды требований обрабатываются в одинаковом порядке, существует m! возможных вариантов (последовательностей). (Для нашего примера имеется 720 вариантов)
Алгоритм включает следующие основные этапы:
Поиск наименьшего элемента.
Ищем в Т-2 наименьший элемент (равен 2, относится ко второй машине) и отмечаем точкой
Таблица 2
Номер издания |
j |
1 |
2 |
3 |
4 |
5 |
6 |
Время обработки на первой машине |
t1j |
6 |
4 |
6 |
5 |
7 |
4 |
Время обработки на второй машине |
t2j |
5 |
2 ● |
3 ● |
6 |
6 |
7 |
Номер цикла |
|
4 |
1 |
2 |
4 |
5 |
3 |
2) Перестановки изделий; Определяется место нахождения элемента. Если этот элемент относится к первой машине, то столбец с точкой поставить на первое место, если ко второй, то поставить на последнее место календарного плана
При наличии равных минимальных элементов в обеих строках изделие с минимальным временем обработки на первой машине ставится на первое место; а на второй машине – на последнее. Если же одинаковые минимальные элементы оказываются в первой (второй) строке, то на первое (последнее) место ставится изделие, которому соответствует меньший элемент второй (первой) строки.
Таблица 3
-
Номер издания
j
6
4
5
1
3
2
Время обработки на первой машине
t1j
4
5
7
6
6
4
Время обработки на второй машине
t2j
7
6
6
5
3
2
Вычеркивание из таблицы столбца, отмеченного точкой и возвращение к п.1 и так далее, пока не будет исчерпан список всех изделий. Получим оптимальную последовательность обработки на двух машинах (Т-3).
Процесс оптимальной обработки
Время обработки на Машине 1
|
t16=4 t14=5 t15=7 t11=6 t13=6 t12=4 |
Время обработки на Машине 2
Время простое Машин 2
|
t26=7 t24=6 t25=6 t21=5 t23=3 t22=2
tn1 tn2
Tmin = 29+4+1 = 34 |