
- •Security methods. Kerckhoff’sPrinciple
- •3)Cryptographic methods of protection of the information
- •Legislative measures
- •Administrative measures Kerckhoff’sPrinciple
- •2.Tasks of cryptography
- •Impossibility to refuse authorship .Sender needn’t have possibility no refuse his authorship.
- •7.Polyalphabetic Ciphers
- •Viginere cipher
- •Description of the cipher
- •10. Symmetric cryptosystem. Des
- •11. Symmetric cryptosystem. 3des
- •12 Symmetric cryptosystem. Aes
- •13.Block cipher modes
- •14. Stream ciphers. Prg
- •Itself synchronous stream cipher
- •15. Stream ciphers. Rc4
- •16. Public key crypto. Rsa
- •17 Public key crypto.Diffie-Hellman
- •20. Protocols. Definitions.Rules of communication.Types of protocols.Problems.
- •21.Secure Protocols. Three types of Protocol
- •22.SecureElections. Simplistic Protocol #1,2
- •23.SecureElections. Voting with Blind Signatures
- •6.1 Secure Elections
- •Voting with Blind Signatures
- •24SecureElections.Election with two organization
- •Voting with Two Central Facilities
- •25.Digital Cash Protocol
- •26 Key management. Certification problem. Certificate
- •27 Authority. X.509. Certificate Hierarchy
- •28 Pgp. Key Management in pgp. Pgp’s Web of Trust. Idea.Key Schedule.Standard ansi x9.17. Working with pgp
- •30.One way functions. Properties.Collision-resistance.Example.
- •31.One way functions md5 algorithm
- •32.One way functions sha algorithm. Sha-256, sha-384, and sha-512.
- •Tasks of cryptography
7.Polyalphabetic Ciphers
A cipher is polyalphabetic if a given letter of the alphabet will not always enciphered by the same ciphertext letter, and, as a consequence, cannot be described by a single set of ciphertext alphabet corresponding to a single set of plaintext alphabet.
One of the problems with monoalphabetic ciphers is that the letters occur with certain frequency in a language. This frequency can be graphed for both plaintext letters and the ciphertext letters of the enciphered message, and, after some analysis, the cipher is relatively easily broken.
Viginere cipher
In a Caesar cipher, each letter of the alphabet is shifted along some number of places; for example, in a Caesar cipher of shift 3, A would become D, Bwould become E, Y would become B and so on. The Vigenère cipher consists of several Caesar ciphers in sequence with different shift values.
To encrypt, a table of alphabets can be used, termed a tabula recta, Vigenère square, or Vigenère table. It consists of the alphabet written out 26 times in different rows, each alphabet shifted cyclically to the left compared to the previous alphabet, corresponding to the 26 possible Caesar ciphers. At different points in the encryption process, the cipher uses a different alphabet from one of the rows. The alphabet used at each point depends on a repeating keyword.[citation needed]
For example, suppose that the plaintext to be encrypted is:
ATTACKATDAWN
The person sending the message chooses a keyword and repeats it until it matches the length of the plaintext, for example, the keyword "LEMON":
LEMONLEMONLE
Each row starts with a key letter. The remainder of the row holds the letters A to Z (in shifted order). Although there are 26 key rows shown, you will only use as many keys (different alphabets) as there are unique letters in the key string, here just 5 keys, {L, E, M, O, N}.
9. The Advanced Encryption Standard (AES) is a specification for the encryption of electronic data established by the U.S.National Institute of Standards and Technology (NIST) in 2001.[3]Originally called Rijndael, the cipher was developed by two Belgian cryptographers, Joan Daemen and Vincent Rijmen, who submitted to the AES selection process.
AES has been adopted by the U.S. government and is now used worldwide. It supersedes the Data Encryption Standard (DES), which was published in 1977. The algorithm described by AES is asymmetric-key algorithm, meaning the same key is used for both encrypting and decrypting the data.
Description of the cipher
AES is based on a design principle known as a substitution-permutation network, and is fast in both software and hardware.[6] Unlike its predecessor DES, AES does not use a Feistel network. AES is a variant of Rijndael which has a fixed block size of 128 bits, and a key size of 128, 192, or 256 bits. By contrast, the Rijndael specification per se is specified with block and key sizes that may be any multiple of 32 bits, both with a minimum of 128 and a maximum of 256 bits.
AES operates on a 4×4 column-major order matrix of bytes, termed the state, although some versions of Rijndael have a larger block size and have additional columns in the state. Most AES calculations are done in a special finite field.
The key size used for an AES cipher specifies the number of repetitions of transformation rounds that convert the input, called the plaintext, into the final output, called the ciphertext. The number of cycles of repetition are as follows:
10 cycles of repetition for 128-bit keys.
12 cycles of repetition for 192-bit keys.
14 cycles of repetition for 256-bit keys.
Each round consists of several processing steps, including one that depends on the encryption key itself. A set of reverse rounds are applied to transform ciphertext back into the original plaintext using the same encryption key.