
- •Глава 1 резьбовые соединения
- •§ 1.1. Резьба
- •§ 1.2. Основные типы крепежных деталей
- •§ 1.3. Способы стопорения резьбовых соединений
- •§ 1.4. Теория винтовой пары
- •§ 1.5. Расчет резьбы на прочность
- •§ 1.6. Расчет на прочность стержня винта (болта) при различных случаях нагружения
- •§ 1.7. Эффект эксцентричного нагружения болта
- •§ 1.8. Расчет соединений, включающих группу болтов
- •§ 1.9. Материалы резьбовых изделий и допускаемые напряжения
- •Глава 2 заклепочные соединения
- •§ 2.1. Конструкции, технология, классификация, области применения
- •§ 2.2. Расчет на прочность элементов заклепочного шва
- •§ 2.3. Материалы заклепок и допускаемые напряжения
- •Глава 3 сварные соединения
- •§ 3.1. Общие сведения и применение
- •§ 3.2. Конструкция и расчет на прочность1
- •§ 3.3. Прочность соединений и допускаемые напряжения
- •Глава 4
- •§ 4.1. Общие сведения, оценка и применение
- •§ 4.2. Соединение пайкой
- •§ 4.3. Соединение склеиванием
- •Глава 5 клеммовые соединения
- •§ 5.1. Конструкция и применение
- •§ 5.2. Расчет на прочность
- •Глава 6
- •§ 6.1. Шпоночные соединения
- •§ 6.2. Материал шпонок и допускаемые напряжения
- •§ 6.3. Оценка соединений призматическими шпонками и их применение
- •§ 6.4. Общие замечания по расчету шпоночных соединений
- •§ 6.5. Зубчатые (шлицевые) соединения
- •§ 6.6. Основные критерии работоспособности и расчета
- •§ 6.7. Расчет зубчатых соединений
- •Глава 7
- •§ 7.1. Общие сведения
- •§ 7.2. Прочность соединения
- •§ 7.3. Оценка и область применения
- •§ 7.4. Соединение посадкой на конус
- •Глава 8
- •§ 8.1. Общие сведения
- •§ 8.2. Краткие сведения о геометрии и кинематике
- •§ 8.3. Контактные напряжения и контактная прочность
- •§ 8.4. Критерии работоспособности и расчета
- •§ 8.5. Расчетная нагрузка
- •§ 8.6. Расчет прямозубых цилиндрических передач на прочность
- •§ 8.7. Особенности расчета косозубых и шевронных цилиндрических передач
- •§ 8.8. Конические зубчатые передачи
- •§ 8.9. Конические передачи с непрямыми зубьями
- •§ 8.10. Передаточное отношение одноступенчатых и многоступенчатых зубчатых передач
- •§ 8.11. Коэффициент полезного действия, охлаждение и смазка
- •§ 8.12. Материалы и термообработка
- •§ 8.13. Допускаемые напряжения
- •§ 8.14. Оптимизация конструкции зубчатых передач
- •§ 8.15. Особенности расчета планетарных передач
- •§ 8.16. Передача с зацеплением Новикова
- •§ 8.17. Краткие сведения о зубчатых передачах с перекрещивающимися осями (винтовых и гипоидных)*
- •Глава 9
- •§ 9.1. Геометрические параметры и способы изготовления передач
- •§ 9.2. Кинематические параметры передач
- •§ 9.3. Кпд червячной передачи
- •§ 9.4. Силы в зацеплении
- •§ 9.5. Оценка и применение
- •§ 9.6. Расчет прочности зубьев
- •§ 9.7. Материалы и допускаемые напряжения
- •§ 9.8. Тепловой расчет, охлаждение и смазка передачи
- •§ 9.9. Глобоидные передачи1
- •§ 10.1. Общие сведения
- •§ 10.2. Кинематические параметры и принцип действия
- •§ 10.3. Передаточное отношение и число зубьев зубчатой передачи
- •§ 10.4. Особенности преобразования движения в зубчатой передаче
- •§ 10.5. Относительное движение зубьев, выбор профиля и размеров зубьев
- •§ 10.6. Форма и размер деформирования гибкого колеса
- •§ 10.7. Рекомендации по выбору параметров зацепления и расчет гибких колес
- •§ 10.8. Кпд и критерии работоспособности передачи
- •§ 10.9. Расчет прочности гибкого колеса
- •§ 10.10. Разновидности волновых передач, их оценка и применение
- •Глава 11
- •§ 11.1. Общие сведения
- •§ 11.2. Основные типы фрикционных передач и вариаторов
- •§ 11.3. Основные факторы, определяющие качество фрикционной передачи
- •§ 11.4. Основы расчета прочности фрикционных пар
- •§ 8.3). Расчетные контактные напряжения при начальном касании по линии (тела качения — цилиндры, конусы, торы и ролики с образующими одного радиуса) определяют по формуле
- •Глава 12
- •§ 12.1. Общие сведения
- •§ 12.2. Основы расчета ременных передач
- •§ 12.3. Плоскоременная передача
- •§ 12.4. Клиноременная передача
- •§ 12.5. Передача зубчатыми ремнями
- •Глава 13
- •§ 13.1. Общие сведения
- •§ 13.2. Основные характеристики
- •§ 13.3. Конструкция основных элементов
- •§ 13.4. Силы в цепной передаче
- •§ 13.5. Кинематика и динамика цепной передачи
- •§ 13.6. Критерии работоспособности и расчета
- •§ 13.7. Практический расчет цепной передачи
- •§ 14.1. Общие сведения
- •§ 14.2. Особенности расчета резьбы винтовых механизмов
- •Глава 15 валы и оси
- •§ 15.1. Общие сведения
- •§ 15.2. Проектный расчет валов
- •§ 15.3. Проверочный расчет валов
- •4Ось вращения вапа
- •§ 16.1. Подшипники скольжения — общие сведения и классификация
- •§ 16.2. Условия работы и виды разрушения подшипников скольжения
- •§ 16.3. Трение и смазка подшипников скольжения
- •§ 16.4. Практический расчет подшипников скольжения
- •§ 16.5. Конструкции и материалы подшипников скольжения
- •§ 16.6. Подшипники качения—общие сведения и классификация
- •§ 16.7. Условия работы подшипника качения, влияющие на его работоспособность
- •§ 16.8. Практический расчет (подбор) подшипников качения
- •Глава 17 муфты
- •§ 17.1. Общие сведения, назначение и классификация
- •§ 17.2. Муфты глухие
- •§ 17.3. Муфты компенсирующие жесткие
- •§ 17.4. Муфты упругие
- •§ 17.5. Конструкция и расчет упругих муфт
- •Без загрузки (м) 21
- •§ 17.6. Муфты управляемые или сцепные
- •§ 17.7. Муфты автоматические, или самоуправляемые
- •§ 17.8. Муфты комбинированные
Глава 2 заклепочные соединения
§ 2.1. Конструкции, технология, классификация, области применения
Заклепочное соединение неразъемное. В большинстве случаев его применяют для соединения листов и фасонных прокатных профилей. Соединение образуют расклепыванием стержня заклепки, вставленной в отверстие деталей (рис. 2.1, где I — обжимка; 2 — прижим при машинной клепке; 3 — замыкающая головка; 4—закладная головка; 5—поддержка).
При расклепывании вследствие пластических деформаций образуется замыкающая головка, а стержень заклепки заполняет зазор в отверстии. Силы, вызванные упругими деформациями деталей и стержня заклепки, стягивают детали. Относительному сдвигу деталей оказывают сопротивление стержни заклепок и частично силы трения в стыке.
Отверстия в деталях продавливают или сверлят. Сверление менее производительно, но обеспечивает повышенную прочность (см. табл. 2.1). При продавливании листы деформируются, по краям отверстия появляются мелкие трещины, а на выходной стороне отверстия образуется острая кромка, которая может вызвать подрез стержня заклепки. Поэтому продавливание иногда сочетают с последующим рассверливанием.
Рис.
2.1
В зависимости от конструкции соединения применяют различные типы заклепок, геометрические размеры которых стандартизованы. Основные типы заклепок изображены на рис. 2.2 (а—с полукруглой головкой; б—полупотайная; в— потайная; г — трубчатая). Если нет доступа к замыкающей головке (например, пустотелое крыло самолета), то применяют заклепки для односторонней клепки. Например, на рис. 2.2, д замыкающая головка образуется при протягивании конической оправки через коническое отверстие заклепки и на рис. 2.2, е — взрывом заряда 7.
шЬ.
А
По назначению заклепочные соединения разделяют на прочные (в металлоконструкциях); прочноплотные (в котлах и резервуарах с высоким давлением); плотные (в резервуарах с небольшим внутренним давлением).
Рис.
2.3
О (рис. 2.3), на которую распространяются деформации сжатия в стыке деталей. Если зоны действия соседних заклепок пересекаются, то соединение будет плотным. Для обеспечения плотности шва иногда выполняют чеканку (пластическое деформирование листов, например, пневматическими молотками) вокруг заклепок и по кромкам листов.
а)
По
конструктивному признаку
различают заклепочные соединения
внахлестку и встык,
однорядные
и многорядные,
односрезные
и многосрезные.
На рис. 2.4: а
— однорядный односрез- ный шов внахлестку;
б—
однорядный двухсрезный шов встык с
двумя накладками.
Заклепочные
соединения применяют для деталей,
материал которых плохо сваривается,
и в тех конструкциях, где важно
растянуть
во времени развитие процесса
разрушения.
Например, разрушение одной или
нескольких из тысяч заклепок крыла
самолета еще не приводит к его разрушению,
но уже может быть обнаружено и устранено
РИС
2.4 ПРИ контроле И ремонте.
В сварных соединениях образование трещин сопровождается высокой концентрацией напряжений, что приводит к ускорению процесса разрушения.