
- •8. В свою очередь, число центров кристаллизации (ч.Ц.) и скорость роста кристаллов (с.Р.) зависят от степени переохлаждения (рис. 3.6).
- •22. Деформацией называется изменение формы и размеров тела под действием напряжений. Пластической или остаточной называется деформация после прекращения действия вызвавших ее напряжений.
- •25. Твердость – это сопротивление материала проникновению в его поверхность стандартного тела (индентора), не деформирующегося при испытании.
- •26. Прочность – способность материала сопротивляться деформациям и разрушению.
- •. Влияние легирующих элементов на свойства чугуна
- •38. Инструментальные стали
- •2. Скрытые примеси - газы (азот, кислород, водород) – попадают в сталь при выплавке.
- •40. Назначение легирующих элементов.
- •47. Отжига, нормализации, закалки и отпуска
- •48. Обработка стали холодом
- •52. Диффузионная металлизвция
- •50. Химико-термическая обработка стали
- •56. Поверхностное упрочнение стальных деталей
- •57. Специальные конструкционные стали
- •Литейные алюминиевые сплавы.
- •60. Титан и сплавы
. Влияние легирующих элементов на свойства чугуна
СЕРЫЙ ЧУГУН:
Углерод уменьшению прочности, твердости и увеличению пластичности; углерод улучшает литейные свойства чугуна
Кремний снижает твердость, а также уменьшает усадку; повышенное содержание кремния
Марганец Механические свойства чугуна повышаются при содержании марганца до 0,7-1,3 %, а при дальнейшем увеличении - снижаются. Марганец увеличивает усадку сплава
Сера снижает прочность и пластичность, но несколько повышает износостойкость сплава,
Фосфор повышает жидкотекучесть сплава, придает чугуну хладноломкость, т. е. Хрупкость
Хром. С увеличением хрома растет прочность и твердость отливокМолибден
Молибден С увеличением содержания молибдена повышается твердость без ухудшения обрабатываемости и возрастает сопротивление износу
Медь увеличивает жидкотекучесть, повышает прочность и твердость сплава
ВЫСОКОПРОЧНЫЙ ЧУГУН:
Увеличенное содержание углерода улучшает литейные свойства чугуна
С повышением содержания кремния возрастает предел прочности при растяжении, при дальнейшем увеличении содержания - уменьшаются предел прочности при растяжении и относительное удлинение
С повышением содержания марганца уменьшается доля феррита и увеличивается количество перлита; при этом повышается предел прочности при растяжении и уменьшается относительное удлинение. Для повышения износостойкости содержание марганца увеличивают до 1,0- 1,3%
Для образования графита шаровидной формы содержание магния должно быть не ниже 0,03%, а церия не ниже 0,02% (остаточное содержание). При более низком содержании не весь графит получает шаровидную форму; часть его содержится в виде пластинок, что снижает механические свойства сплава. При повышенном содержании магния (и церия) в структуре сплава образуется цементит и, следовательно, снижаются механические свойства. Оптимальное содержание остаточного магния - 0,04-0,08%
Чем выше содержание серы в исходном чугуне, тем труднее получить полностью шаровидную форму графита и, следовательно, высокие механические свойства
Фосфор оказывает существенное влияние на структуру и механические свойства. Чтобы получить чугун с высокой пластичностью, содержание фосфора не должно превышать 0,08%. Для получения чугуна с невысокой пластичностью содержание фосфора увеличивают до 0,12-0,15%
С увеличением содержания хрома в определенных пределах повышается жаростойкость, коррозионная стойкость и износостойкость сплава Хром замедляет процесс графитизации углерода. Содержание хрома в сплаве не превышает 0,06-0,08%; повышение содержания до 0,1 -0,12% приводит к образованию в структуре
При содержании в сплаве 1 % меди прочность при растяжении повышается до 40%, а текучесть - до 50 % и соответственно при 2% меди - до 65% и до 70%. Содержание меди более 2% препятствует образованию в структуре сплава шаровидного графита
КОВКИЙ ЧУГУН:
Углерод - основной регулятор механических свойств ковкого чугуна; чугун обладает низкой жидкотекучестью и требует высокого перегрева
Для ферритного ковкового чугуна суммарное содержание кремния и углерода должно быть 3,7-4,1%. Содержание кремния зависит от количества углерода и толщины стенки. При содержании кремния до 1,5% механические свойства сплава повышаются.
Марганец увеличивает количество связанного углерода, повышает прочность феррита. При повышении содержания марганца до 0,8-1,4% увеличивается количество перлита, прочность сплава повышается, но резко падает пластичность и ударная вязкость. В ферритном чугуне содержание марганца не должно превышать 0,6%, в перлитном - 1,0%.
Фосфор оказывает такое же, как для серого чугуна влияние на структуру и механические свойства сплава.
Никель способствует графитизации углерода и увеличивает количество перлита в металлической основе сплава.
Хром замедляет процесс графитизации углерода. Содержание хрома в сплаве не превышает 0,06-0,08%; повышение содержания до 0,1 -0,12% приводит к образованию в структуре сплава стойких карбидов.
Медь способствует графитизации углерода и увеличивает содержание в сплаве перлита.
35. Чугунами называют сплавы железа с углеродом, содержащие более 2,14% углерода. Они содержат те же примеси, что и сталь, но в большем количестве. В зависимости от состояния углерода в чугуне, различают:
Белый чугун, в котором весь углерод находится в связанном состоянии в виде карбида, и чугун, в котором углерод в значительной степени или полностью находится в свободном состоянии в виде графита, что определяет прочностные свойства сплава, чугуны подразделяют на:
1) серые - пластинчатая или червеобразная форма графита; 2) высокопрочные - шаровидный графит; 3) ковкие - хлопьевидный графит.
Чугуны маркируют двумя буквами и двумя цифрами, соответствующими минимальному значению временного сопротивления δв при растяжении в МПа-10. Серый чугун обозначают буквами "СЧ" (ГОСТ 1412-85), высокопрочный - "ВЧ" (ГОСТ 7293-85), ковкий - "КЧ" (ГОСТ 1215-85).
СЧ10 - серый чугун с пределом прочности при растяжении 100 МПа; ВЧ70 - высокопрочный чугун с сигма временным при растяжении 700 МПа; КЧ35 - ковкий чугун с δв растяжением примерно 350 МПа.
Для работы в узлах трения со смазкой применяют отливки из антифрикционного чугуна АЧС-1, АЧС-6, АЧВ-2, АЧК-2 и др., что расшифровывается следующим образом: АЧ - антифрикционный чугун: С серый, В - высокопрочный, К - ковкий. А цифры обозначают порядковый номер сплава согласно ГОСТу 1585-79.
Белый чугун .Из них изготовляют прокатные валки, тормозные колодки и другие детали, работающие в условиях износа. Серый чугун широко применяют в автотракторном и сельскохозяйственном машиностроении для производства отливок, поэтому его называют литейным. Из него изготавливают станины металлорежущих станков, блоки и гильзы автомобильных и тракторных двигателей, поршневые кольца, корпуса Ковкий чугун широко используют в сельскохозяйственном машиностроении для изготовления деталей, которые в процессе работы испытывают ударные нагрузки (зубчатые колеса, звенья цепей и др.).
36.
Классификация и маркировка сталей
Классификация сталей
Стали классифицируются по множеству признаков.
По химическому: составу: углеродистые и легированные.
По содержанию углерода:
низкоуглеродистые, с содержанием углерода до 0,25 %;
среднеуглеродистые, с содержанием углерода 0,3…0,6 %;
высокоуглеродистые, с содержанием углерода выше 0,7 %
По равновесной структуре: доэвтектоидные, эвтектоидные, заэвтектоидные.
По качеству. Количественным показателем качества является содержания вредных примесей: серы и фосфора:
,
– углеродистые стали обыкновенного качества:
– качественные стали;
– высококачественные стали.
По способу выплавки:
в мартеновских печах;
в кислородных конверторах;
в электрических печах: электродуговых, индукционных и др.
По назначению:
конструкционные – применяются для изготовления деталей машин и механизмов;
инструментальные – применяются для изготовления различных инструментов;
специальные – стали с особыми свойствами: электротехнические, с особыми магнитными свойствами и др.
Маркировка сталей
Принято буквенно-цифровое обозначение сталей
Углеродистые стали обыкновенного качества (ГОСТ 380).
Стали содержат повышенное количество серы и фосфора
Маркируются Ст.2кп., БСт.3кп, ВСт.3пс, ВСт.4сп.
Ст – индекс данной группы стали. Цифры от 0 до 6 - это условный номер марки стали. С увеличением номера марки возрастает прочность и снижается пластичность стали. По гарантиям при поставке существует три группы сталей: А, Б и В. Для сталей группы А при поставке гарантируются механические свойства, в обозначении индекс группы А не указывается. Для сталей группы Б гарантируется химический состав. Для сталей группы В при поставке гарантируются и механические свойства, и химический состав.
Индексы кп, пс, сп указывают степень раскисленности стали: кп - кипящая, пс - полуспокойная, сп - спокойная.
Качественные углеродистые стали
Качественные стали поставляют с гарантированными механическими свойствами и химическим составом (группа В). Степень раскисленности, в основном, спокойная.
Конструкционные качественные углеродистые стали Маркируются двухзначным числом, указывающим среднее содержание углерода в сотых долях процента. Указывается степень раскисленности, если она отличается от спокойной.
Сталь 08 кп, сталь 10 пс, сталь 45.
Содержание углерода, соответственно, 0,08 %, 0,10 %, 0.45 %.
Инструментальные качественные углеродистые стали маркируются буквой У (углеродистая инструментальная сталь) и числом, указывающим содержание углерода в десятых долях процента.
Сталь У8, сталь У13.
Содержание углерода, соответственно, 0,8 % и 1,3 %
Инструментальные высококачественные углеродистые стали. Маркируются аналогично качественным инструментальным углеродистым сталям, только в конце марки ставят букву А, для обозначения высокого качества стали.
Сталь У10А.
Качественные и высококачественные легированные стали
Обозначение буквенно-цифровое. Легирующие элементы имеют условные обозначения, Обозначаются буквами русского алфавита.
Обозначения легирующих элементов:
Х – хром, Н – никель, М – молибден, В – вольфрам,К – кобальт, Т – титан, А – азот ( указывается в середине марки),
Г – марганец, Д – медь, Ф – ванадий, С – кремний,П – фосфор, Р – бор, Б – ниобий, Ц – цирконий,Ю – алюминий
Легированные конструкционные стали
Сталь 15Х25Н19ВС2
В начале марки указывается двухзначное число, показывающее содержание углерода в сотых долях процента. Далее перечисляются легирующие элементы. Число, следующее за условным обозначение элемента, показывает его содержание в процентах,
Если число не стоит, то содержание элемента не превышает 1,5 %.
В указанной марке стали содержится 0,15 % углерода, 35% хрома, 19 % никеля, до 1,5% вольфрама, до 2 % кремния.
Для обозначения высококачественных легированных сталей в конце марки указывается символ А.
Легированные инструментальные стали
Сталь 9ХС, сталь ХВГ.
В начале марки указывается однозначное число, показывающее содержание углерода в десятых долях процента. При содержании углерода более 1 %, число не указывается,
Далее перечисляются легирующие элементы, с указанием их содержания.
Некоторые стали имеют нестандартные обозначения.
Быстрорежущие инструментальные стали
Сталь Р18
Р – индекс данной группы сталей (от rapid – скорость). Содержание углерода более 1%. Число показывает содержание основного легирующего элемента – вольфрама.
В указанной стали содержание вольфрама – 18 %.
Если стали содержат легирующие элемент, то их содержание указывается после обозначения соответствующего элемента.
Шарикоподшипниковые стали
Сталь ШХ6, сталь ШХ15ГС
Ш – индекс данной группы сталей. Х – указывает на наличие в стали хрома. Последующее число показывает содержание хрома в десятых долях процента, в указанных сталях, соответственно, 0,6 % и 1,5 %. Также указываются входящие с состав стали легирующие элементы. Содержание углерода более 1 %.
37. К конструкционным сталям, применяемым для изготовления разнообразных деталей машин, предъявляют следующие требования:
1)сочетание высокой прочности и достаточной вязкости.2)хорошие технологические свойства
3)экономичность.4)недефицитность
Высокая конструкционная прочность стали, достигается путем рационального выбора химического состава, режимов термической обработки, методов поверхностного упрочнения, улучшением металлургического качества.
Решающая роль в составе конструкционных сталей отводится углероду. Он увеличивает прочность стали, но снижает пластичность и вязкость, повышает порог хладоломкости. Поэтому его содержание регламентировано и редко превышает 0,6 %.
Влияние на конструкционную прочность оказывают легирующие элементы. Повышение конструкционной прочности при легировании связано с обеспечением высокой прокаливаемости, уменьшением критической скорости закалки, измельчением зерна.
Применение упрочняющей термической обработки улучшает комплекс механических свойств.
Металлургическое качество влияет на конструкционную прочность. Чистая сталь при одних и тех же прочностных свойствах имеет повышенные характеристики надежности.
Классификация конструкционных сталей
Машиностроительные стали предназначены для изготовления различных деталей машин и механизмов.Они классифицируются:
1)по химическому составу ( углеродистые и легированные);2)по обработке (цементуемые, улучшаемые);
3)по назначению (пружинные, шарикоподшипниковые).
Достоинства углеродистых качественных сталей – дешевизна и технологичность. Но из-за малой прокаливаемости эти стали не обеспечивают требуемый комплекс механических свойств в деталях сечением более 20 мм.
Цементуемые стали.
Используются для изготовления деталей, работающих на износ и подвергающихся действию переменных и ударных нагрузок. Детали должны сочетать высокую поверхностную прочность и твердость и достаточную вязкость сердцевины.
Высокопрочные стали.
Высокопрочными называют стали, имеющие предел прочности более 1500 МПа, который достигается подбором химического состава и оптимальной термической обработки.
Шарикоподшипниковые стали.
Подвергаются воздействию высоких нагрузок переменного характера. Основными требованиями являются высокая прочность и износостойкость, высокий предел выносливости, отсутствие концентраторов напряжений, неметаллических включений, полостей, ликваций.
Шарикоподшипниковые стали характеризуются высоким содержанием углерода (около 1 %) и наличием хрома (ШХ9, ШХ15).
Высокое содержание углерода и хрома после закалки обеспечивает структуру мартенсит плюс карбиды, высокой твердости, износостойкости, необходимой прокаливаемости.
Автоматные стали.
Автоматными называют стали, обладающие повышенной обрабатываемостью резанием.
Эффективным металлургическим приемом повышения обрабатываемости резанием является введение в сталь серы, селена, теллура, кальция, которые изменяют состав неметаллических включений, а также свинца, который образует собственные включения.