Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
fiz.doc
Скачиваний:
5
Добавлен:
01.03.2025
Размер:
830.46 Кб
Скачать

23. Как устроен триод? Какое явление лежит в основе работы триодной лампы? Для чего служит сетка? Что называется работой выхода электрона?

Электровакуумный триод, или просто триод, — электронная лампа, имеющая три электрода: термоэлектронный катод (прямого или косвенного накала), анод и одну управляющую сетку. Конструктивно триод состоит из трех металлических электродов — катода, анода и сетки, помещенных в корпус с откачанным воздухом. Через дополнительную цепь катод нагревается электрическим током до высоких температур, так что с его поверхности начинается эмиссия электронов. Обычно электрический потенциал анода относительно катода положителен, а режим работы триода определяется потенциалом сетки. Когда на сетку подается положительный потенциал (меньший потенциала на аноде), электрическое поле разгоняет электроны в направлении сетки. Поверхность сетки делается не сплошной, а состоит из отдельных тонких проводов, образующих решетку. Из-за этого электроны почти не попадают на сетку, а пролетают сквозь нее на анод, создавая ток в анодной цепи. Если же потенциал сетки отрицателен, электрическое поле препятствует движению электронов, возвращая их на катод, и ток в цепи не течет. Таким образом, в электровакуумном триоде можно эффективно управлять током в цепи анода, меняя напряжение на сетке. Причем проводимость триода может меняться от полностью закрытого состояния до полностью открытого. Но ведь именно этими свойствами и должен обладать вентиль! И именно в качестве «электронных вентилей» использовались триоды в первых электронно-вычислительных машинах. Работа выхода — разница между минимальной энергией, которую необходимо сообщить электрону для его «непосредственного» удаления из объёма твёрдого тела, и энергией Ферми. Здесь «непосредственность» означает то, что электрон удаляется из твёрдого тела через данную поверхность и перемещается в точку, которая расположена достаточно далеко от поверхности по атомным масштабам, но достаточно близко по сравнению с размерами макроскопических граней кристалла. При этом пренебрегают дополнительной работой, которую необходимо затратить на преодоление внешних полей, возникающих из-за перераспределения поверхностных зарядов. Таким образом, работа выхода для одного и того же вещества для различных кристаллографических ориентаций поверхности оказывается различной.

24. Какие элементы электрической цепи имеют нелинейность вольтамперной характеристики? Динамическое и статическое сопротивление. Инерционность и безынерционность сопротивлений. Добротность.

Характерные примеры элементов, обладающих существенно нелинейной ВАХ: диод, динистор, стабилитрон. Часто приходится иметь дело с электронными устройствами, в которых ток I не пропорционален напряжению U; в подобных случаях нет смысла говорить о сопротивлении, так как отношение U/I не является постоянной величиной, независимой от U, а, наоборот, зависит от U. Для подобных устройств полезно знать наклон зависимости U - I (вольт-амперной характеристики). Иными словами, представляет интерес отношение небольшого изменения приложенного напряжения к соответствующему изменению тока через схему: ΔU/ΔI (или dU/dl). Это отношение измеряется в единицах сопротивления (в омах) и во многих расчётах играет роль сопротивления. Оно называется сопротивлением для малых сигналов, дифференциальным сопротивлением, динамическим или инкрементным сопротивлением. Отношение напряжения к току фиксированной точки характеристики называют статическим сопротивлением. В линейных электрических цепях сопротивления не изменяется при изменении тока или напряжения: U1/I1 = R = U2/I2. В нелинейных нагрузках статическое сопротивление для каждой точки характеристики свое и изменяется при изменении тока или напряжения:r1ст = U1/I1; r2ст = U2/I2; tgf = rст2. Безинерционность современных СУВ обусловлена в первую очередь применением вертикального принципа фазосмещення), во-вторых, применением в качестве фиксирующих и усилительных элементов практически безиверциоввых полупроводниковых диодов, триодов, управляемых вентилей.  Добротность — характеристика колебательной системы, определяющая полосу резонанса и показывающая, во сколько раз запасы энергии в системе больше, чем потери энергии за один период колебаний. Добротность обратно пропорциональна скорости затухания собственных колебаний в системе. То есть, чем выше добротность колебательной системы, тем меньше потери энергии за каждый период и тем медленнее затухают колебания. Общая формула для добротности любой колебательной системы:

, где:  — резонансная частота колебаний,  — энергия, запасённая в колебательной системе,  — рассеиваемая мощность.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]