- •1.Какие из простейших электрических приборов применяются в физическом практикуме? Их назначение.
- •2.Генераторы сигналов низких и высоких частот. Применение.
- •3. Типы резисторов. Их назначение в электрической цепи
- •4. Разновидности диодов. Примеры использования.
- •5. Генераторы переменного тока. Их назначение
- •7. Применение электронно-лучевых осциллографов в физическом практикуме.
- •12. Атомно-силовые микроскопы. Принцип работы.
- •13. Принцип работы оптических микроскопов. Металлография.
- •14. Ускорители. Виды.
- •15.Приборы рентгеноструктурного и рентгеноспектрального анализа.
- •17. Каков физический смысл удельного сопротивления? Укажите единицу измерения удельного сопротивления. Как зависит удельное сопротивление (сопротивление) от температуры?
- •18. Метод магнетрона для определения удельного заряда электрона (e/m)? Почему при некотором значении тока через соленоид электроны не достигают анода?
- •19. В чем состоит явление термоэлектронной эмиссии? в работе каких известных Вам приборов используют это явление?
- •20. На чем основан принцип действия биполярного транзистора? Основные носители заряда в полупроводниках р и п типов.
- •23. Как устроен триод? Какое явление лежит в основе работы триодной лампы? Для чего служит сетка? Что называется работой выхода электрона?
- •24. Какие элементы электрической цепи имеют нелинейность вольтамперной характеристики? Динамическое и статическое сопротивление. Инерционность и безынерционность сопротивлений. Добротность.
- •25. Что такое индукция магнитного поля? самоиндукция? Какие методы измерения магнитной индукции Вы знаете? От чего зависит коэффициент взаимной индукции? Эффект Холла.
- •26. Чем обусловлен сдвиг фаз между током и напряжением в цепи? Почему при резонансе напряжений Ul и Uc могут быть больше общего напряжения?
- •27. Чем обусловлены магнитные свойства парамагнетиков, диамагнетиков, ферромагнетиков? в чем различие? и как это связано с магнитной проницаемостью?
- •28. Что вы понимаете под основной кривой намагничивания? под остаточной магнитной индукцией? Что характеризует площадь петли гистерезиса?
- •31,43,45,57.Принцип работы приборов электростатической системы измерения.
- •32,50.Сформулируйте закон Джоуля-Ленца. Физический смысл закона.
- •33,47. Принцип работы приборов магнитоэлектрической системы измерения.
- •34,59.Выведите формулу индукции магнитного поля бесконечно длинного соленоида.
- •36,56. Сформулируйте теорему о циркуляции вектора в по контуру l. Пользуясь теоремой, дайте вывод формулы для индукции магнитного поля бесконечного соленоида.
- •37,52.Сформулируйте закон Био-Савара-Лапласа. Пользуясь этим законом дайте вывод формулы для индукции магнитного поля на оси кругового витка с током
- •39,60. В чем заключается явление Холла? Дайте вывод формулы для эдс Холла?
- •41,55. Принцип работы ферродинамических приборов
- •42,54. Закон Ома для электрических цепей переменного тока. Lсr – колебательный контур. Построение векторных диаграмм.
- •44. Чему равно отношение значений магнитной индукции внутри бесконечно длинного соленоида и на срезе полубесконечного соленоида?
- •46.Изложите суть графического метода расчета нелинейных цепей. Какое нелинейное сопротивление называется инерционным и какое безинерционным?
- •49. Принцип работы приборов электродинамической системы измерения.
- •51. В чем различие приборов магнитоэлектрической и электромагнитной системы?
- •53. Принцип работы индукционных приборов.
23. Как устроен триод? Какое явление лежит в основе работы триодной лампы? Для чего служит сетка? Что называется работой выхода электрона?
Электровакуумный триод, или просто триод, — электронная лампа, имеющая три электрода: термоэлектронный катод (прямого или косвенного накала), анод и одну управляющую сетку. Конструктивно триод состоит из трех металлических электродов — катода, анода и сетки, помещенных в корпус с откачанным воздухом. Через дополнительную цепь катод нагревается электрическим током до высоких температур, так что с его поверхности начинается эмиссия электронов. Обычно электрический потенциал анода относительно катода положителен, а режим работы триода определяется потенциалом сетки. Когда на сетку подается положительный потенциал (меньший потенциала на аноде), электрическое поле разгоняет электроны в направлении сетки. Поверхность сетки делается не сплошной, а состоит из отдельных тонких проводов, образующих решетку. Из-за этого электроны почти не попадают на сетку, а пролетают сквозь нее на анод, создавая ток в анодной цепи. Если же потенциал сетки отрицателен, электрическое поле препятствует движению электронов, возвращая их на катод, и ток в цепи не течет. Таким образом, в электровакуумном триоде можно эффективно управлять током в цепи анода, меняя напряжение на сетке. Причем проводимость триода может меняться от полностью закрытого состояния до полностью открытого. Но ведь именно этими свойствами и должен обладать вентиль! И именно в качестве «электронных вентилей» использовались триоды в первых электронно-вычислительных машинах. Работа выхода — разница между минимальной энергией, которую необходимо сообщить электрону для его «непосредственного» удаления из объёма твёрдого тела, и энергией Ферми. Здесь «непосредственность» означает то, что электрон удаляется из твёрдого тела через данную поверхность и перемещается в точку, которая расположена достаточно далеко от поверхности по атомным масштабам, но достаточно близко по сравнению с размерами макроскопических граней кристалла. При этом пренебрегают дополнительной работой, которую необходимо затратить на преодоление внешних полей, возникающих из-за перераспределения поверхностных зарядов. Таким образом, работа выхода для одного и того же вещества для различных кристаллографических ориентаций поверхности оказывается различной.
24. Какие элементы электрической цепи имеют нелинейность вольтамперной характеристики? Динамическое и статическое сопротивление. Инерционность и безынерционность сопротивлений. Добротность.
Характерные примеры элементов, обладающих существенно нелинейной ВАХ: диод, динистор, стабилитрон. Часто приходится иметь дело с электронными устройствами, в которых ток I не пропорционален напряжению U; в подобных случаях нет смысла говорить о сопротивлении, так как отношение U/I не является постоянной величиной, независимой от U, а, наоборот, зависит от U. Для подобных устройств полезно знать наклон зависимости U - I (вольт-амперной характеристики). Иными словами, представляет интерес отношение небольшого изменения приложенного напряжения к соответствующему изменению тока через схему: ΔU/ΔI (или dU/dl). Это отношение измеряется в единицах сопротивления (в омах) и во многих расчётах играет роль сопротивления. Оно называется сопротивлением для малых сигналов, дифференциальным сопротивлением, динамическим или инкрементным сопротивлением. Отношение напряжения к току фиксированной точки характеристики называют статическим сопротивлением. В линейных электрических цепях сопротивления не изменяется при изменении тока или напряжения: U1/I1 = R = U2/I2. В нелинейных нагрузках статическое сопротивление для каждой точки характеристики свое и изменяется при изменении тока или напряжения:r1ст = U1/I1; r2ст = U2/I2; tgf = rст2. Безинерционность современных СУВ обусловлена в первую очередь применением вертикального принципа фазосмещення), во-вторых, применением в качестве фиксирующих и усилительных элементов практически безиверциоввых полупроводниковых диодов, триодов, управляемых вентилей. Добротность — характеристика колебательной системы, определяющая полосу резонанса и показывающая, во сколько раз запасы энергии в системе больше, чем потери энергии за один период колебаний. Добротность обратно пропорциональна скорости затухания собственных колебаний в системе. То есть, чем выше добротность колебательной системы, тем меньше потери энергии за каждый период и тем медленнее затухают колебания. Общая формула для добротности любой колебательной системы:
,
где:
—
резонансная частота колебаний,
—
энергия, запасённая в колебательной
системе,
—
рассеиваемая мощность.
