
- •Конспект лекций
- •Направление подготовки: 080100 «Экономика»
- •1. Предмет и задачи курса. 5
- •2. Спецификация переменных в уравнениях регрессии. 13
- •3. Парная и множественная регрессия. 19
- •Глава 4. Предпосылки метода наименьших квадратов 82
- •Глава 5. Нелинейные модели регрессии. 102
- •1. Предмет и задачи курса.
- •1.1 Определение эконометрики. Взаимосвязь с другими науками. Эконометрика и экономическая теория. Эконометрика и статистика. Эконометрика и экономико-математические методы.
- •1.2 Области применения эконометрических моделей. Методологические вопросы построения эконометрических моделей: обзор используемых методов.
- •2. Спецификация переменных в уравнениях регрессии.
- •2.1. Эконометрические модели: общая характеристика, различия статистического и эконометрического подхода к моделированию.
- •2. Регрессионные модели с одним уравнением.
- •3. Системы одновременных уравнений.
- •2.2.Спецификация переменных в уравнение регрессии. Ошибки спецификации.
- •3. Парная и множественная регрессия.
- •3.1.Понятие о функциональной, статистической и корреляционных связях. Основные задачи корреляционно-регрессионного анализа.
- •3.2. Уравнение регрессии, его смысл и назначение. Выбор типа математической функции при построении уравнения регрессии.
- •3.3 Линейная модель парной регрессии. Метод наименьших квадратов (мнк). Свойство оценок мнк.
- •Статистические свойства оценок метода наименьших квадратов.
- •3.4.Ковариация. Коэффициент ковариации. Показатели качества регрессии: линейный коэффициент регрессии, коэффициент детерминации.
- •3.5.Стандартная ошибка уравнения регрессии. Оценка статистической значимости показателей корреляции, параметров уравнения регрессии. Дисперсионный анализ. Критерии Фишера и Стьюдента.
- •3.6. Понятие о множественной регрессии. Классическая линейная модель множественной регрессии (клммр). Определение параметров уравнения множественной регрессии методом наименьших квадратов.
- •3.8. Оценка качества модели множественной регрессии: f-критерий Фишера, t-критерий Стьюдента. Мультиколлинеарность. Методы устранения мультиколлинеарности.
- •Глава 4. Предпосылки метода наименьших квадратов
- •4.1. Исследование остатков величин регрессии.
- •4.2. Проблема гетероскедастичности. Её экономические причины и методы выявления.
- •4.3. Обобщенный метод наименьших квадратов. (омнк).
- •Глава 5. Нелинейные модели регрессии.
- •5.1. Нелинейные модели регрессии и их линеаризация.
- •5.2. Оценка степени тесноты связи между количественными переменными.
- •5.3. Индекс корреляции, теоретическое корреляционное отношение. Коэффициент детерминации для нелинейных моделей.
- •5.4. Применение мнк для нелинейных моделей.
3.3 Линейная модель парной регрессии. Метод наименьших квадратов (мнк). Свойство оценок мнк.
Линейная регрессия находит широкое применение в эконометрике в виде чёткой экономической интерпретации её параметров.
Линейная регрессия сводится к нахождению
уравнения вида
(1) или
(2).
Уравнение (1) позволяет по заданным
значениям фактора х иметь теоретические
значения результативного признака,
подставляя в него фактические значения
фактора х. Уравнение (2) рассматривает
у как зависимую переменную, состоящую
из двух составляющих:
1) неслучайную составляющую
,
где
выступает как объясняющая (независимая)
переменная, а
и
- параметры уравнения;
2) случайного члена -
(возмущение)
Если
,
то получатся точки
.
Если
,
то получим точки
;
.
Случайный член существует по ряду причин:
1) включение не всех объясняющих переменных (есть ещё другие факторы, влияющие на у), но измерить их невозможно (например, психологические);
2) агрегирование переменных (объединение некоторого числа микроэкономического соотношения);
3) неправильное описание структуры модели (временные ряды зависят не только от t, но и от t-1);
4) неправильная функциональная спецификация (не линейная, а какая-то другая);
5) ошибки измерения.
εi есть сумма всех этих факторов.
Рассмотрим задачу определения параметров модели, то есть коэффициентов и - оценке параметров модели.
Оценки параметров линейной регрессии могут быть найдены разными методами, например можно построить поле корреляции, взять 2 точки и провести через них прямую.
оценка параметра
,
то есть отрезок отсекаемой прямой на
оси
;
,
- угловой коэффициент прямой,
- оценка параметра
.
Необходимо с самого начала признать, что мы не сможем рассчитать истинные значения и . Мы можем получить только оценки, и они могут быть или хорошими или плохими. Построение линии регрессии на глаз является достаточно субъективным.
Отрезок
ε1
(остаток),
ε2.
Остатки должны быть min.
.
Существует целый ряд критериев:
1. МНК
минимизация суммы квадратов отклонений.
2. Минимизируется
сумма модулей отклонений.
3. Функция Хубера
,
где
- «мера» с которой отклонение входит в
функционал.
Рассмотрим достоинства и недостатки перечисленных функционалов.
1) сумма квадратов отклонений:
«+» лёгкость вычисления, хорошие статистические свойства, простота математических выводов делают возможным построить развитую теорию, позволяющую провести тщательную проверку различных статистических гипотез;
«-» чувствительность к выбросам;
2) сумма модулей отклонений:
«+» робастость, то есть нечувствительность к выбросам;
«-» сложность вычислительной процедуры,
большим отклонениям надо придавать
больший вес (лучше 2 отклонения по 1, чем
одно 0 и 2), неоднозначность, то есть
разным значениям параметра
могут соответствовать одинаковые суммы
модулей отклонений.
Функция Хубера является попыткой совместить достоинства двух первых функционалов.
Рассмотрим МНК:
Из множества линий регрессии на графике выбирается та, сумма квадратов отклонений была минимальной.
Чтобы найти минимум надо взять частные производные по и функции S и приравнять их нулю.
Получим систему нормальных уравнений для оценки параметров a и b (3):
(3)
Решая систему (3) любым методом: исключение,
Крамера (через определители), найдем
оценки параметров a
и b. МНК даёт
самые точные несмещённые и эффективные
оценки
и
.
Можно воспользоваться формулами для определения параметров:
;
- ковариация признаков;
- дисперсия признака х.
Параметр b называется коэффициентом регрессии. Его величина показывает среднее изменение результата (у) с изменением фактора х на одну единицу. Зависимость между расходами на питание (у) и располагаемым личным доходом (х) за период 1959 по 1983 г. В США описывается уравнением регрессии.
,
х увеличился на 1 единицу, а у на 0,093ед.
Если Х увеличился на 1 млрд $, то у (расходы на питание) возрастут на 93 млн $ (т. е. из 1 $ дохода 9,3 цента – на питание).
Параметр а,
.
Уравнение регрессии теряет смысл, «а»
- не имеет экономического содержания.
Интерпретировать можно только знак при
параметре а.
- относительное изменение параметра у,
происходит медленнее, чем изменение
фактора или вариации результата.
Коэффициенты вариации
;
;
Если
,
то
;
Если
,
то
Возможность чёткой экономической интерпретации коэффициента регрессии сделала линейное уравнение регрессии достаточно распространенным в экономических исследованиях.