- •Вопрос 1(разновидность компонентов)
- •Вопрос 2(фхп литографии)
- •Вопрос 3
- •5 Вопрос(получение монокристов
- •5) Основы получения монокристаллических слитков полупроводников
- •Вопрос8(диффузия)
- •Вопрос11(основные положения окисления)
- •30Вопрос(роль вакуума)
- •Вопрос 6(раздедение на пластины)
- •26Вопрос(ис)
- •Вопрос 4(фхп неразъемных)
- •32Вопрос(узлы вакуумных систем)
- •Вопрос 7(пп плоскопарралельные пластины)
- •Вопрос9(фхп граница Me)
- •21Вопрос(рост пленок электрохим зараждение)
- •Вопрос19(катодное распыление
- •Вопрос10(фхп силициды)
- •Вопрос12(рост термического оксида)
- •14Вопрос(радиационные дефекты)
- •18Вопрос(электронные пучки)
- •17Вопрос(электроннолучевое распыление)
- •20Вопрос(тонкие пленки реактивно)
- •27(Виды ис)
- •22Вопрос(эпитаксиальные слои гомо)
- •29Вопрос(тонкие пленки лазерное распыление)
- •31Вопрос(пленки ионно-плазменное)
- •33Вопрос(электрохим осаждение пленок)
- •2.1. Физические основы.
- •2.2. Принципиальная схема установки и характеристики метода.
- •Вопрос28(разновидность элементарных пп)
- •34Вопрос(реактивные процессы пленок)
- •25Вопрос(этапы развития пп)
- •Вопрос24(резка пластин на кристы)
- •Очистка поверхности газовым травлением
- •Плазменные методы удаления материала с поверхности твердого тела. Сущность и классификация методов обработки поверхности
- •15 Вопрос(ионная иплантация)
- •16Вопрос(термическое испарение)
29Вопрос(тонкие пленки лазерное распыление)
Лазерное напыление – уникальный технологический процесс, позволяющий наносить на поверхность деталей обладающие специальными свойствами материалы (металлы, карбиды и т.п.), добиваясь, таким образом, восстановления геометрии, повышения поверхностной прочности, коррозионной устойчивости, снижения трения и прочих эффектов. В отличие от технологии, использующей тепло электрической дуги или сгорания смеси горючего и кислорода, лазерное напыление обеспечивает меньшее термическое воздействие и смешивание материала подложки с напыляемым материалом, при более прочном их скреплении.
Схема установки лазерным испарением представлена на рис. 7.
Рис. 7 Схема установки лазерным испарением.
Глубина проникновения лазерного луча в поверхность мишени мала (приблизительно 10 нм). Это означает, что только тонкий поверхностный слой материала подвержен воздействию излучения в то время, как оставшаяся часть мишени остается незатронутой.
Говоря о достоинствах лазерного испарения, можно отметить, что это один из наиболее быстрых методов получения тонкопленочных покрытий, он предоставляет четко ориентированное направление распространения плазмы, наряду со стехиометрическим трансфером материи от мишени к подложке.
31Вопрос(пленки ионно-плазменное)
Ионно-плазменное напыление
Для бомбардировки мишени удобно использовать заряженные частицы — ионы, так как их легко разгонять до нужной энергии в электрическом поле. Иногда для напыления применяют специальные источники ионных пучков, в которых ионы отсортированы по массам и имеют одну и ту же энергию. Но чаще в качестве источников ионов используют газоразрядную плазму, из которой положительные ионы вытягиваются отрицательно заряженной мишенью. Такой способ распыления называют ионно-плазменным напылением.
Установка ионно-плазменного напыления
В напылительной камере создают продольное магнитное поле, параллельное электрическому полю между катодом и анодом. Это поле закручивает траектории электронов, летящих по направлению к стенкам, и тем самым предотвращает накопление на них отрицательного заряда и дрейф к стенкам положительных ионов.
Схема установки ионно-плазменного напыления
А — анод; К- катод; М — мишень; П — подложка
Количество ионов, образующихся в камере, зависит от тока электронов с катода, давления газа в камере и напряжения на аноде если расстояние до анода значительно больше этой длины, то на своем пути до анода электрон успеет испытать большое число столкновений с атомами газа. Для того чтобы эти соударения приводили к ионизациям, электрон должен приобрести в электрическом поле достаточно большую энергию. С ростом энергии электрона вероятность ионизации атома при столкновении с электроном сначала растет, а затем начинает уменьшаться.
Образующиеся положительные ионы устремляются на мишень, находящуюся под большим отрицательным потенциалом. Как уже упоминалось, ионы легко теряют свою кинетическую энергию при соударении с атомами газа, так как массы сталкивающихся частиц практически равны. По этому они достигают мишени с энергией, приобретенной ими в электрическом поле на последней длине свободного пробега l перед нею, т. е. с энергией l*E, где E — напряженность поля у мишени. Эта энергия может быть существенно ниже q*V, где V- напряжение на мишени.
Бомбардируя мишень, ионы выбивают из нее атомы, часть из которых попадает на подложку и, конденсируясь (напыляясь), образует пленку — происходит ионно-плазменное напыление
