
- •1 Вопрос
- •2 Вопрос
- •3Вопрос
- •4 Вопрос
- •5 Вопрос
- •6 Вопрос
- •7 Вопрос
- •8 Вопрос
- •9 Вопрос
- •10 Вопрос
- •11Вопрос
- •12 Вопрос
- •16 Вопрос
- •17 Вопрос
- •34 Вопрос
- •35 Вопрос
- •36 Вопрос
- •37 Вопрос
- •38 Вопрос
- •39 Вопрос
- •40 Вопрос
- •41 Вопрос
- •42 Вопрос
- •43 Вопрос
- •44 Вопрос
- •50 Вопрос
- •51 Вопрос
- •52 Вопрос
- •53 Вопрос
- •54 Вопрос
- •55 Вопрос
4 Вопрос
Теорема о трех силах.
Если свободное твердое тело находится в равновесии под действием трех непараллельных сил, то эти силы лежат в одной плоскости, а линии действия сил пересекаются в одной точке.
Это теорема позволяет в ряде случаев определить направление реакции связи.
5 Вопрос
5.Система сил, линии действия которых пересекаются в одной точке,
называется системой с х о д я щ и х с я с и л. Система сходящихся сил эквивалентна одной силе (равнодействующей), которая равна сумме всех этих сил и проходит через точку пересечения их линий действия. система сходящихся сил в общем случае приводится к одной силе – равнодействующей этой системы сил, которая изображается замыкающей силового многоугольника, построенного на силах системы. Линия действия равнодействующей силы проходит через центр пучка параллельно замыкающей силового многоугольника.
6 Вопрос
6. Теорема о приведении системы сил:
Любая система сил, действующих на абсолютно твердое тело, может быть заменена одной силой R, равной главному вектору этой системы сил и приложенной к произвольно выбранному центру О, и одной парой сил с моментом LO, равным главному моменту системы сил относительно центра О.
Такая эквивалентная замена данной системы сил силой R и парой сил с моментом LO называют приведением системы сил к центу О.
В результате приведения плоской системы параллельных сил к центру возможны следующие случаи:
если R = 0, LO = 0, то заданная система является равновесной;
если хотя бы одна из величин R или LO не равна нулю, то система сил не находится в равновесии.
При этом:
Eсли R = 0 и LO 0, то система сил приводится к одной паре сил с моментом LO, причем в этом случае величина момента LO не зависит от выбора центра О.
Eсли R 0, то при любом значении LO система сил приводится к равнодействующей силе, линия действия которой параллельна линиям действия сил системы.
7 Вопрос
7. Сложение двух сходящихся сил, т. е. сил, линии действия которых пересекаются в одной точке, производится по тем же двум правилам – правилу параллелограмма и правилу треугольника, рассмотренным в главе I (§ 1), и теми же методами – графическим, графо-аналитическим и аналитическим (методом проекций).
При сложении сил необходимо учитывать следующее обстоятельство.
В теоретической механике – в механике твердого тела, сила – скользящий вектор, т. е. при решении задач силу можно переносить вдоль линии ее действия в любую точку. Поэтому, если на тело действуют две силы P1 и P2, лежащие в одной плоскости, как, например, показано на рис. 25, а, то эти силы можно перенести в точку C – точку пересечения линий действия данных сил и считать их приложенными таким образом к одной точке тела (рис. 25, б), как это и сделано в задаче 20.
8 Вопрос
8. Необходимым и достаточным условием равновесия системы сил является равенство нулю главного вектора и главного момента. Для плоской системы сил эти условия получают вид Fo=åFk=0, МОz=åМoz(Fk)=0, (5.15), где О– произвольная точка в плоскости действия сил. Получим: Fox=åFkx=F1x+F2x+…+Fnx=0, Pox=åFky=F1y+F2y+…+Fny=0, МОz=åMOz(Fk)=Moz(F1)+Moz(F2)+…+Moz(Fn)=0, т. е. для равновесия плоской системы сил необходимо и достаточно, чтобы алгебраические суммы проекций всех сил на две координатные оси и алгебраическая сумма моментов всех сил относительно произвольной точки равнялись нулю. Второй формой уравнения равновесия является равенство нулю алгебраических сумм моментов всех сил относительно любых трех точек, не лежащих на одной прямой; åMAz(Fk)=0, åMBz(Fk)=0, åMCz(Fk)=0, (5.17), где A, В и С– указанные точки. Необходимость выполнения этих равенств вытекает из условий (5.15). Докажем их достаточность. Предположим, что все равенства (5.17) выполняются. Равенство нулю главного момента при центре приведения в точке А возможно, либо если система приводится к равнодействующей (R≠0) и линия ее действия проходит через точку А, либо R=0; аналогично равенство нулю главного момента относительно точек В и С означает, что либо R≠0 и равнодействующая проходит через обе точки, либо R=0. Но равнодействующая не может проходить через все эти три точки А, В и С (по условию они не лежат на одной прямой). Следовательно, равенства (5.17) возможны лишь при R=0, т. е. система сил находится в равновесии. Заметим, что если точки А, В и С лежат на одной прямой, то выполнение условий (5.17) не будет достаточным условием равновесия, — в этом случае система может быть приведена к равнодействующей, линия действия которой проходит через эти точки.