
- •1 Основные термины и определения
- •1 По назначению (по характеру изменения задания):
- •2 По количеству контуров:
- •3 По числу регулируемых величин:
- •4 По функциональному назначению:
- •5 По характеру используемых для управления сигналов:
- •6 По характеру математических соотношений:
- •7 По виду используемой для регулирования энергии:
- •8 По наличию внутреннего источника энергии
- •9 По принципу регулирования:
- •2 Характеристики и модели элементов и систем
- •2.1 Основные модели
- •2.2 Статические характеристики
- •2.3 Временные характеристики
- •2.4 Дифференциальные уравнения. Линеаризация
- •2.5 Преобразования Лапласа
- •2.6.5 Определение параметров передаточной функции объекта по переходной кривой
- •3 Функциональные схемы автоматизации
- •3.1 Условные обозначения
- •3.2 Примеры построения условных обозначений приборов и средств автоматизации
- •3.3 Основные принципы построения функциональных схем автоматизации
- •Xe [xt] xiа лампочка.
- •Xe [xt] xirа лампочка.
- •Xe [xt] xiс задвижка.
- •3.4 Примеры схем контроля температуры
- •1 Индикация и регистрация температуры (tir, рисунок 2.35)
- •2 Индикация, регистрация и регулирование температуры с помощью пневматического регулятора (tirс, пневматика, рисунок 2.36)
- •Часть 3. Современные системы управления производством
- •1 Структура современной асутп
- •2 Аппаратная реализация систем управления
- •2.1 Средства измерения технологических параметров
- •2.2 Устройства связи с объектом
- •2.3 Аппаратная и программная платформа контроллеров
- •2.4 Промышленные сети
- •3 Программная реализация систем управления
- •3.1 Виды программного обеспечения
- •3.2 Scada-системы
- •3.3 Работа с субд
- •3.3.1 Принципы работы баз данных
- •3.3.2 Обеспечение безопасности баз данных
- •3.3.3 Операторы языка sql
- •3.4 Методология idef
- •3.4.1 Модели систем
- •3.4.2 Методика построения функциональной модели
- •3.4.3 Методика построения информационной модели
- •3.5 Программные системы управления производством
- •Список литературы
- •Приложение а
- •1 Шина asi
- •2 Шина ControlNet
- •3 Шина Interbus
- •4 Шина can
- •5 Протокол hart
- •6 Шина Foundation Fieldbus
- •7 Протокол lon (lonTalk)
- •8 Шина DeviceNet
- •9 Протокол WorldFip
- •10 Сеть Profibus
- •11 Протокол Ethernet
- •Приложение б
- •Приложение в
- •Приложение г
- •Содержание
- •Часть 1. Теория Автоматического Управления (тау) 4
- •Часть 2. Средства автоматизации и управления 63
- •Часть 3. Современные системы управления производством 104
2.4 Дифференциальные уравнения. Линеаризация
Известно, что любое движение, процессы передачи, обмена, преобразования энергии и вещества математически можно описать в виде дифференциальных уравнений (ДУ). Любые процессы в САР также можно описать дифференциальными уравнениями, которые определяют сущность происходящих в системе процессов независимо от ее конструкции и т.д. Решив ДУ, можно найти характер изменения регулируемой переменной в переходных и установившихся режимах при различных воздействиях на систему.
Для упрощения задачи нахождения ДУ, описывающего работу САР в целом, систему разбивают на ее отдельные элементы, переходные процессы в которых описываются достаточно простыми ДУ. Так как ДУ описывают работу системы независимо от физической сущности протекающих в ней процессов, то при декомпозиции системы нет необходимости учитывать их физическую целостность. Для каждого элемента структурной схемы необходимо составить ДУ, определяющее зависимость изменения выходной величины от входной.
Так как выходная величина предыдущего элемента является входной для последующего, то, определив ДУ отдельных элементов, можно найти ДУ системы.
Однако такой метод применим только в частных случаях. Дело в том, что в большинстве случаев в реальных элементах системы связь между входной и выходной величинами является нелинейной и часто задается в графической форме. Поэтому, даже если ДУ системы и будет получено, оно будет нелинейным. А аналитическое решение нелинейных ДУ возможно далеко не всегда.
Для решения этой проблемы учитывают, что в процессе регулирования отклонения всех изменяющихся величин от их установившихся значений малы, и поэтому возможна замена нелинейных ДУ приближенными линейными ДУ, то есть возможна линеаризация дифференциальных уравнений.
Рассмотрим
сущность процесса линеаризации на
примере сушильного шкафа. Зависимость
температуры объекта от подаваемого
напряжения в большинстве случаев
нелинейна и имеет вид, представленный
на рисунке 1.17.
Графически линеаризацию некоторого уравнения от двух переменных F(х,у) = 0 в окрестности некоторой точки (х0, у0) можно представить как замену рассматриваемого участка кривой на касательную (см. рисунок 1.17), уравнение которой определяется по формуле
,
где
и
- частные производные от F
по х и у. Данное уравнение называется
уравнением в приращениях, поскольку
значения х и у здесь заменены на приращения
х
= х - х0
и у
= у - у0.
Линеаризация
ДУ происходит аналогично, отличие
состоит только в том, что необходимо
искать частные производные по производным
(
,
,
и т.д.). Итоговое уравнение в приращениях
будет содержать приращения производных:
х’
= х’ – х’0,
х”
= х” – х”0,
… , y’
= y’
– y’0,
y”
= y”
– y”0,
и т.д.
Пример. Линеаризация нелинейного ДУ.
3xy
- 4x2
+ 1,5
y
= 5
+ y
Данное
ДУ является нелинейным из-за наличия
произведений переменных х и у. Линеаризируем
его в окрестности точки с координатами
х0
= 1,
=
0,
=
0. Для определения недостающего начального
условия у0
подставим данные значения в ДУ:
3у0 - 4 + 0 = 0 + у0, откуда у0 = 2.
Введем в рассмотрение функцию
F = 3xy - 4x2 + 1,5x’y - 5y’ - y
и определим все ее производные при заданных начальных условиях:
= (3у - 8х
=
3*2 - 8*1 = -2,
= (3х + 1,5x’
- 1
=
3*1 + 1,5*0 - 1 = 2,
= (1,5у
=
1,5*2 = 3,
= -5.
Теперь, используя полученные коэффициенты, можно записать окончательное линейное ДУ:
-5.y’ + 2.y + 3.х’ - 2.х = 0.
Линеаризация ДУ, заданного в явном виде относительно у, т.е. y = F(x) производится по формуле
,
то есть в данном случае нет необходимости искать производные по у.