Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Dokument_Microsoft_Office_Word_7.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
223.66 Кб
Скачать

1.Элементы комбинаторики (перестановки, сочетания, размещения).

Комбинациями наз-ся любые подмножества этого множества. Перестановками наз-ся комбинации, состоящие из одних и тех же n различных элементов и отличающихся только порядком их расположения. - количество перестановок из п различных элементов. Сочетаниями из п элементов по k элементов называются комбинации, содержащие k элементов из данных п элементов, которые отличаются только составом элементов.

Размещениями из п элементов по k элементов называются комбинации, содержащие k элементов из данных п элементов, отличающиеся друг от друга либо самими элементами, либо их порядком.

2.Что называется испытанием, событием? Примеры.

Испытание-выполнение совокупности некоторых условий. Событие-результат испытания(А, В, С;А1, А2....). Пример: S-посадили 5 саженцев, А- прижились 5 саженцев, В-прижилось не менее 4 саженцев и т.д.

3.Три вида событий (невозможные, достоверные, случайные). Определения и примеры.

Невозможные-при S испытаниях заведомо не произойдёт. S: в урне 5 б. ш. Наудачу берут 1 шар. В-шар ч. В-невозм соб. Достоверные-события,к-ые при S обяз произ-т. S: в урне 5 б ш. Достают наудачу 1 шар. А-б ш.-достоверное соб-е. Случайные-при S могут произ-ти, могут и не произ-ти. S:в урне 5 б. и 3 ч. Наудачу выбирают 1 шар. А-ш б.

4.Виды случайных событий (совместные – несовместные, равновозможные – неравновозможные, полная группа событий, противоположные события, элементарные и сложные события). Определения и примеры. События А и В наз-ся несовместными, если в рез-те 1го испытания они не появиться вместе не могут. Пр. S:монету подбрасывают 1 раз

А-выпал орёл, В-вапала решка. А и В-несовметсные.

События наз-ся совместными, если в рез-те испытания они могут появиться вместе.Пр.S:посадили 2 саженца, А-прижились 2 саженца, В-прижилось не мене 1 саженца.Соб А и В-совместные.

События называют равновозможными, если имеются основания считать, что ни одно из этих событий не является более возможным, чем другие(не реже и не чаще других).Пр. появление двойки, туза и валета при вынимании карты из колоды, выпадение любого из чисел от 1 до 6 при бросании игральной кости и т.п.

Неравновозможные события: выпадение числа очков больше 1, между 4 и 6, равного 2 при подбрасывании кубика.

События А12,… ,Аn обр-ют полную группу попарно несовместных событий, если в рез-те испытания обяз-но наступит одно из этих событий. События А12,… ,Аn обр-ют полную группу событий, если в рез-те испытания обяз-но произойдёт хотя бы одно из этих событий.Пр. S:посадили 5 саж. А-ни один саж не прижился. В-хотя бы один саженец прижился-полная группа несовместных событий.Противоположные соб-я-события А и А наз-ся против-ми, если выполнены 2 условия:1. А и А-несовместные.2. А и А-образуют поную группу событий.Пр.S:из колоды 36 карт наудачу достают 4 карты. А-хотя бы 1 карта туз. А-ни одного туза. Конкретный результат испытания называется элементарным событием. В результате испытания происходят только элементарные события. Совокупность элементарных событий это пространство элементарных событий. Сложным событием называется произвольное подмножество пространства

элементарных событий.

Сложное событие в результате испытания наступает тогда и только тогда, когда

в результате испытаний произошло элементарное событие, принадлежащее

сложному.Таким образом, если в результате испытания может произойти только одно

элементарное событие, то в результате испытания происходят все сложные

события, в состав которых входят эти элементарные.Например: испытание - подбрасывание кубика. Элементарное событие - выпадение

грани с номером “1”. Сложное событие - выпадение нечетной грани.

Введем следующие обозначения:

А - событие;

w - элементы пространства W;

W - пространство элементарных событий;

U - пространство элементарных событий как достоверное событие;

V - невозможное событие.

Иногда для удобства элементарные события будем обозначать E­i, Qi.

5.Классическое определение вероятности события. Основное свойство вероятности (доказать). Пр В урне 5 б. и 3 ч. Шара

Наудачу берут 1 шар. А-б ш. В- ч ш. Понятно. Что шансы изылечь б ш больше, чем ч ш. Для коллочественной оценки шансов наступления события вводят вер-ть Р(А) по фор-ле: Р(А)=m/n-класс-ое опред-е вер-ти события. m-число благоприятствующих условий, n-общее число равновозможных исходов.

0≤m≤n /n

0/n≤m/n≤n/n

0≤Р(А)≤1 если событие -(U) достоверное соб-е=>Р(U)=1, А-случ соб-е =>0<P(A)<1.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]