Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
эконометрика.docx
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
229.55 Кб
Скачать

20. Определение и формулы для расчета сумм , , , и . Формулы связи между этими суммами.

Qe= Qy-Qr

Qx= Ʃx2 - Ʃx

Qy= Ʃy2 - Ʃy

Qxy=Ʃxy - Ʃy

Qr=

21.Суть метода наименьших квадратов. Определение и формулы для расчета сумм , , и . Формулы для расчета эмпирических коэффициентов парной линейной регрессии.

Метод наименьших квадратов Оценка параметров уравнения А0 , А1, А2 осуществляется методом наименьших квадратов (МНК). В основе которого лежит предположение о независимости наблюдений исследуемой совокупности и нахождении параметра модели, при котором минимизируется сумма квадратов отклонений фактических значений результативного признака от теоретических, полученных по уравнению регрессии.

S=∑ (YI – Y(X))2→MIN .2)

Система нормальных уравнений для нахождения параметров линейной парной регрессии методом наименьших квадратов имеет след. вид:

N*A0 + A1*∑X = ∑Y

A0*∑X+A1*∑X2=∑X*Y (2.3)

N- объём исследуемой совокупности.

В уравнении регрессии параметр А0 показывает усреднённое влияние на результативный признак неучтённых факторов.

Параметр А1 (А2) – коэффициент регрессии, показывает на сколько изменяется в среднем значение результативного признакапри изменении факторного на единицу в его собственном измерении.

Если связь между признаками криволинейная и описывается уравнением параболы, то система нормальных уравнений будет иметь следующий вид:

N*A0 + A1*∑X + A2*∑X2 = ∑Y,

A0*∑X+A1*∑X2+A2*∑X3=∑XYA0*∑X2+A1*∑X3+A2*∑X4= ∑X2Y (2.4)

Оценка обратной зависимости между Х и У осуществляется на основе уравнения гиперболы. Тогда система нормальных уравнений выглядит так: N*A0 + A1*∑1/X = ∑X

A0*∑1/X + A1∑1/X2 = ∑Y/X

22. Интервальные прогнозы для средних и индивидуальных значений результативного признака.

Интервальный прогноз заключается в построении доверительных интервалов прогноза.

24. Мультиколлинеарность.

Одним из основных препятствий эффективного применения множественного регрессионного анализа является мультиколлинеарность. Она связана с линейной зависимостью между аргументами х1, х2, ..., хk. В результате мультиколлинеарности матрица парных коэффициентов корреляции и матрица (XTX) становятся слабообусловленными, т.е. их определители близки к нулю.

Это приводит к неустойчивости оценок коэффициентов регрессии (53.12), завышению дисперсии s, оценок этих коэффициентов (53.14), так как в их выражения входит обратная матрица (XTX)-1, получение которой связано с делением на определитель матрицы (ХTХ). Отсюда следуют заниженные значения t(bj). Кроме того, мультиколлинеарность приводит к завышению значения множественного коэффициента корреляции.

На практике о наличии мультиколлинеарности обычно судят по матрице парных коэффициентов корреляции. Если один из элементов матрицы R больше 0,8, т.е. | rjl | > 0,8, то считают, что имеет место мультиколлинеарность, и в уравнение регрессии следует включать один из показателей — хj или xl.

Чтобы избавиться от этого негативного явления, обычно используют алгоритм пошагового регрессионного анализа или строят уравнение регрессии на главных компонентах.