Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
эконометрика.docx
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
229.55 Кб
Скачать
  1. Гетероскедастичность. Метод Спирмена.

Гетероскедастичность – свойство оценок коэффициентов регрессии, когда они зависят от свойств случайного члена.

При использовании теста Спирмена предполагается, что дисперсия отклонения будет или увеличиваться, или уменьшаться с увеличением значений X. Поэтому для регрессии, построенной по методу наименьших квадратах, абсолютные величины отклонений ei и значения xi объясняющей переменной X будут коррелированы. Значения xi и ei ранжируются (упорядочиваются по величинам). Затем определяется коэффициент ранговой корреляции. Доказано, что если коэффициент корреляции ρx,|e| для генеральной совокупности равен нулю, то статистика имеет t-распределение Стьюдента с числом степеней свободы v = n - 2. Следовательно, если наблюдаемое значение t-статистики, вычисленное по формуле представленной выше, превышает tкр = tα/2,n-2 (определяется по таблице критических значений распределения Стьюдента), то нужно отклонить гипотезу о равенстве нулю коэффициента корреляции ρx,e, следовательно, и об отсутствии гетероскедастичности. В противном случае гипотеза об отсутствии гетероскедастичности принимается.

8. Классическая линейная регрессионная модель и ее предпосылки.

Классический подход к оцениванию параметров линейной модели основан на методе наименьших квадратов (МНК). Вычисление оценок МНК не требует, вообще-то говоря, введения каких-либо дополнительных гипотез. Сам метод часто рассматривают как способ «разумного» выравнивания эмпирических данных. Относительно оценок МНК можно сделать следующие выводы:

1. Оценки МНК являются функциями от выборки, что позволяет их легко рассчитывать.

2.Оценки МНК являются точечными оценками теоретических коэффициентоврегрессии,т.е. M(ai)=αi i=0,k 2

3.Эмпирическое уравнение регрессии строится таким образом, что ∑ ei = 0 и среднее значение отклонений будет равно 0.

В то же время оценки a = (a0 , a1 , a2 ,....ak ) , вычисленные по МНК, не позволяют сделать вывод, насколько близки найденные значения параметров к своим теоретическим прототипам α = (α0 ,α1 ,.....αk ) и насколько надежны найденные оценки. Поэтому для оценки адекватности модели и ее

прогностической способности необходимо введение дополнительных предположений.

В классической модели линейной регрессии делаются следующие теоретические ограничения на модель:

• Факторные (объясняющие) переменные (X1,X2,.....Xk ) являются

неслучайными величинами.

• Ни одна из объясняющих переменных не является строгой линейной

функцией других объясняющих переменных. Следовательно, ранг матрицы X равен k + 1 < n , где k – число факторных переменных, n .-число наблюдений

Свойства оценок МНК напрямую зависят от свойств случайного членаε . Покажем это на примере множественной регрессии: Y = X ⋅ A + ε

Сформируем основные предпосылки:

1. Нулевое математическое ожидание ошибок;

2. Диагональность ковариационной матрицы ошибок;

3. Отсутствие гетероскедастичности в модели.

Нарушение любой из этих предпосылок ведет к искажению полученных результатов. Можно не обнаружить существующую зависимость или построить ложную модель. Поэтому, за кажущейся простотой метода скрывается целый комплекс проблем, неочевидных на первый взгляд.

9. Коэффициент эластичности. Средний и точечный коэффициент эластичности линейной, гиперболической, степенной и показательной функции.

Эластичность показывает, на сколько процентов в среднем изменится показатель у от своего среднего значения при изменении фактора х на 1% от своей средней величины:

Средний коэффициент эластичности характеризует, на сколько процентов изменится результативная переменная у относительно своего среднего уровня, если факторная переменная х изменится на 1 % относительного своего среднего уровня

Общая формула для расчёта коэффициента эластичности для среднего значения

факторной переменной х:

Где.

– значение функции у при среднем значении факторной переменной х.

Для каждой из разновидностей нелинейных функций средние коэффициенты эластичности рассчитываются по индивидуальным формулам.

Для линейной функции вида: yi=β0+β1xi, средний коэффициент эластичности определяется по формуле:

Для показательной функции вида:

средний коэффициент эластичности определяется по формуле:

Для степенной функции вида:

средний коэффициент эластичности определяется по формуле:

Точечные коэффициенты эластичности характеризуются тем, что эластичность функции зависит от заданного значения факторной переменной х1.

Точечный коэффициент эластичности характеризует, на сколько процентов изменится результативная переменная у относительно своего значения в точке х1, если факторная переменная изменится на 1 % относительно заданного уровня х1.

Общая формула для расчёта коэффициента эластичности для заданного значения х1факторной переменной х:

Для линейной функции вида:

yi=β0+β1xi,

точечный коэффициент эластичности определяется по формуле:

В знаменателе данного показателя стоит значение линейной функции в точке х1.

Для показательной функции вида:

точечный коэффициент эластичности определяется по формуле:

Для степенной функции вида:

точечный коэффициент эластичности определяется по формуле: