
- •«Самарский государственный технический университет»
- •Элентрические и электронные аппараты Конспект лекций
- •Раздел 1. Основы теории электрических аппаратов
- •Введение. Предмет и задачи. Литература и госТы, определения и классификация. Состояния и перспективы развития. Области применения, классификация электромагнитов, расчет магнитных полей.
- •Классификация магнитных цепей постоянного и переменного токов. Характеристики магнитномягких материалов
- •Классификация магнитных цепей
- •Характеристики некоторых магнитномягких материалов
- •Б. Полюса цилиндрической формы
- •Расчет магнитных проводимостей воздушного зазора по методу суммирования простых объемных фигур поля
- •Расчет магнитных проводимостей воздушных путей графическим методом
- •Определение магнитной проводимости воздушного зазора при постоянном магнитном напряжении между ферромагнитными поверхностями,
- •Магнитная цепь электромагнитов постоянного тока
- •Магнитная цепь электромагнитов переменного тока
- •Катушки электромагнитов
- •Магнитные материалы для электромагнитов постоянного и переменного тока
- •Лекция №4.
- •Сила тяги электромагнитов
- •Лекция № 5.
- •Динамика и время срабатывания электромагнитов
- •Лекция №6.
- •6. Электродинамические усилия (эду), методы расчета. Электродинамическая устойчивость. Нагрев электроаппаратов. Нормы нагрева, термическая устойчивость.
- •Силы втягивания дуги (проводника) в стальную решетку
- •Электродинамическая устойчивость аппаратов
- •Допустимые максимальные температуры электрических аппаратов в нормальном режиме и при коротком замыкании изолированные проводники электрического тока в нормальном режиме
- •Изолированные и неизолированные т0к0ведущие части аппаратов при коротких замыканиях
- •Применение формулы ньютона для расчета отдачи тепла с наружной поверхности окружающей среде (жидкости, газу)
- •Применение формулы ньютона для рассмотрения устанавливающегося процесса нагрева тела от источников тепла, расположенных внутри тела
- •Основы теории передачи тепла теплопроводностью основной закон теплопроводности био - фурье
- •Передача тепла теплопроводностью сквозь толщу стенки, ограниченную двумя плоскостями
- •Процесс нагрева при коротком замыкании. Понятие 0 термической устойчивости
- •Жидкометаллические контакты
- •Физические особенности дуг030г0 разряда при высокой плотности газовой среды
- •Гашение электрических дуг в цепях постоянного тока
- •Лекция №9.
- •9. Горения и гашения дуги переменного тока: в условиях активной деионизации, высокого напряжения, низкого напряжения.
- •А. Открытая дуга переменного тока при высоком напряжении источника
- •Б. Дуга переменного тока в условиях активной деионизации
- •В. Дуга переменного тока в условиях отключения цепей низкого напряжения
- •Усилитель с самонасыщением (мус)
- •Параметры мус Статические параметры
- •Нагрев плавкой вставки при длительной нагрузке
- •Конструкция предохранителей низкого напряжения
- •Выбор предохранителей
- •Тема лекции:
- •12. Контакторы постоянного и переменного тока, параметры, требования. Магнитные пускатели.
- •1. Общие сведения
- •2. Устройство контактора с управлением от сети постоянного тока
- •3. Контакторы переменного тока
- •3.1. Контактная система
- •3.2. Гашение дуги в контакторах переменного тока
- •3.3. Дугогасительные системы высокочастотных контакторов
- •3.4. Электромагнитный механизм контактора переменного тока
- •4. Магнитные пускатели
- •4.1. Требования к пускателям и условия их работы
- •4.2. Конструкция и схема включения пускателя
- •5. Современные контакторы, выпускаемые отечественной промышленностью
- •6. Современные магнитные пускатели, выпускаемые отечественной промышленностью
- •6.2. Технические параметры
- •Электромагнитные реле (тока и напряжения, для энергосистем и электроприводов). Общие сведения
- •Реле напряжения
- •Лекция №14. Тема лекции:
- •14. Тепловое реле. Устройство, характеристики. Реле времени.
- •1.Тепловые реле.
- •1. Механизм с биметаллической защелкой (рис.14.2).
- •2. Механизм теплового реле времени. (рис.14.3)
- •5. Механизм с «прыгающим контактом» (рис. 14.6).
- •6. Механизм с прыгающей биметаллической
- •7. Механизм Алексеевского в. В. (рис.14.8)
- •Электромеханические реле времени общие сведения
- •Реле времени с электромагнитным замедлением
- •Работу.
- •Б) Схемы включения реле.
- •Реле с электромагнитным замедлением рэ-100 – рэ-570.
- •Тиристорный пускатель
- •Заключение
- •Электрические аппараты
- •«Самарский государственный технический университет»
- •443100 Г. Самара, ул. Молодогвардейская, 244. Главный корпус Отпечатано в типографии Самарского государственного технического университета
- •443100 Г. Самара, ул. Молодогвардейская, 244. Корпус n 8
Электромеханические реле времени общие сведения
В схемах защиты и автоматики часто требуется выдержка времени между срабатыванием двух или нескольких аппаратов. При автоматизации технологических процессов также может возникнуть необходимость в определенной временной последовательности операций. Для создания выдержки времени служат электрические аппараты, называемые реле времени.
Общими требованиями для реле времени являются:
а) стабильность выдержки времени при колебаниях напряжения, частоты питания, температуры окружающей среды и воздействии других факторов;
б) малые потребляемая мощность, масса и габариты. Возврат реле в исходное положение происходит, как правило, при его обесточивании. Поэтому коэффициент возврата может быть очень низким.
В
зависимости от назначения к реле времени
предъявляются различные специфические
требования. Для схем автоматического
управления электроприводом при большой
частоте включений требуются реле с
высокой механической износостойкостью
— до
срабатываний.
Требуемые выдержки времени находятся
в пределах 0,25—10 с. К этим реле не
предъявляются требования относительно
высокой стабильности выдержки времени.
Разброс времени срабатывания может
достигать 10 %. Реле должны работать в
производственных условиях при наличии
интенсивных механических воздействий.
Реле
для защиты энергосистем должны иметь
большую точность выдержки времени. Эти
реле работают относительно редко,
поэтому к ним не предъявляются особые
требования по износостойкости.
Износостойкость реле времени защиты
порядка
срабатываний. Выдержки времени таких
реле составляют 0,1—20 с.
Для автоматизации технологических процессов необходимы реле с большой выдержкой времени — от нескольких минут до нескольких часов. В этом случае, как правило, используются моторные реле времени. В настоящее время созданы также полупроводниковые реле с таким же большим диапазоном выдержки времени.
Реле времени с электромагнитным замедлением
а) Устройство реле и влияние различных факторов на его
Работу.
Принцип электромагнитного замедления рассмотрен выше. Конструкция реле с таким замедлением типа РЭВ-800 (рис.14.11) содержит П-образный магнитопровод 1 и якорь 2 с немагнитной прокладкой 3. Магнитопровод укрепляется на плите 4 с помощью литого алюминиевого цоколя 5, на котором устанавливается контактная система 6.
На магнитопроводе установлена намагничивающая обмотка 7 и короткозамкнутая обмотка в виде овальной гильзы 8. Усилие возвратной пружины 9 изменяется с помощью регулировочной гайки 10 которая фиксируется шплинтом.
Для получения большой выдержки времени при отпускании необходима высокая магнитная проводимость рабочего и паразитного зазоров в замкнутом состоянии магнитной системы .С этой целью все соприкасающиеся детали магнитопровода и якоря тщательно шлифуются. Литой алюминиевый цоколь создает дополнительный коротко-замкнутый виток, увеличивающий выдержку времени.
У
реальных магнитных материалов после
отключения намагничивающей обмотки
поток спадает до
,
который определяется свойствами
материала магнитопровода, геометрическими
размерами магнитной цепи и магнитной
проводимостью рабочего зазора .
Рис.14.11. Реле времени.
Чем
меньше коэрцитивная сила магнитного
материала при заданных размерах магнитной
цепи и магнитной проводимости рабочего
зазора, тем ниже остаточная индукция,
а следовательно, и остаточный поток.
При этом возрастает наибольшая
выдержка времени, которая может быть
получена от реле. Применение стали с
низким значением
позволяет увеличить выдержку времени.
Выдержка времени при отпускании для насыщенной магнитной системы с короткозамкнутым витком или обмоткой может быть найдена с помощью формулы
,
где
w
— число
витков короткозамкнутой обмотки; R
— ее
сопротивление; i
— ток в
короткозамкнутой обмотке;
— значение магнитного потока, при
котором происходит
отпускание якоря; Ф0
— установившееся значение магнитного
потока в магнитопроводе при включенной
намагничивающей
обмотке;
—МДС
первичной обмотки. Можно показать, что
для получения большой выдержки времени
материал магнитопровода должен иметь
высокую магнитную проницаемость на
ненасыщенном участке кривой
намагничивания.