- •«Самарский государственный технический университет»
- •Элентрические и электронные аппараты Конспект лекций
- •Раздел 1. Основы теории электрических аппаратов
- •Введение. Предмет и задачи. Литература и госТы, определения и классификация. Состояния и перспективы развития. Области применения, классификация электромагнитов, расчет магнитных полей.
- •Классификация магнитных цепей постоянного и переменного токов. Характеристики магнитномягких материалов
- •Классификация магнитных цепей
- •Характеристики некоторых магнитномягких материалов
- •Б. Полюса цилиндрической формы
- •Расчет магнитных проводимостей воздушного зазора по методу суммирования простых объемных фигур поля
- •Расчет магнитных проводимостей воздушных путей графическим методом
- •Определение магнитной проводимости воздушного зазора при постоянном магнитном напряжении между ферромагнитными поверхностями,
- •Магнитная цепь электромагнитов постоянного тока
- •Магнитная цепь электромагнитов переменного тока
- •Катушки электромагнитов
- •Магнитные материалы для электромагнитов постоянного и переменного тока
- •Лекция №4.
- •Сила тяги электромагнитов
- •Лекция № 5.
- •Динамика и время срабатывания электромагнитов
- •Лекция №6.
- •6. Электродинамические усилия (эду), методы расчета. Электродинамическая устойчивость. Нагрев электроаппаратов. Нормы нагрева, термическая устойчивость.
- •Силы втягивания дуги (проводника) в стальную решетку
- •Электродинамическая устойчивость аппаратов
- •Допустимые максимальные температуры электрических аппаратов в нормальном режиме и при коротком замыкании изолированные проводники электрического тока в нормальном режиме
- •Изолированные и неизолированные т0к0ведущие части аппаратов при коротких замыканиях
- •Применение формулы ньютона для расчета отдачи тепла с наружной поверхности окружающей среде (жидкости, газу)
- •Применение формулы ньютона для рассмотрения устанавливающегося процесса нагрева тела от источников тепла, расположенных внутри тела
- •Основы теории передачи тепла теплопроводностью основной закон теплопроводности био - фурье
- •Передача тепла теплопроводностью сквозь толщу стенки, ограниченную двумя плоскостями
- •Процесс нагрева при коротком замыкании. Понятие 0 термической устойчивости
- •Жидкометаллические контакты
- •Физические особенности дуг030г0 разряда при высокой плотности газовой среды
- •Гашение электрических дуг в цепях постоянного тока
- •Лекция №9.
- •9. Горения и гашения дуги переменного тока: в условиях активной деионизации, высокого напряжения, низкого напряжения.
- •А. Открытая дуга переменного тока при высоком напряжении источника
- •Б. Дуга переменного тока в условиях активной деионизации
- •В. Дуга переменного тока в условиях отключения цепей низкого напряжения
- •Усилитель с самонасыщением (мус)
- •Параметры мус Статические параметры
- •Нагрев плавкой вставки при длительной нагрузке
- •Конструкция предохранителей низкого напряжения
- •Выбор предохранителей
- •Тема лекции:
- •12. Контакторы постоянного и переменного тока, параметры, требования. Магнитные пускатели.
- •1. Общие сведения
- •2. Устройство контактора с управлением от сети постоянного тока
- •3. Контакторы переменного тока
- •3.1. Контактная система
- •3.2. Гашение дуги в контакторах переменного тока
- •3.3. Дугогасительные системы высокочастотных контакторов
- •3.4. Электромагнитный механизм контактора переменного тока
- •4. Магнитные пускатели
- •4.1. Требования к пускателям и условия их работы
- •4.2. Конструкция и схема включения пускателя
- •5. Современные контакторы, выпускаемые отечественной промышленностью
- •6. Современные магнитные пускатели, выпускаемые отечественной промышленностью
- •6.2. Технические параметры
- •Электромагнитные реле (тока и напряжения, для энергосистем и электроприводов). Общие сведения
- •Реле напряжения
- •Лекция №14. Тема лекции:
- •14. Тепловое реле. Устройство, характеристики. Реле времени.
- •1.Тепловые реле.
- •1. Механизм с биметаллической защелкой (рис.14.2).
- •2. Механизм теплового реле времени. (рис.14.3)
- •5. Механизм с «прыгающим контактом» (рис. 14.6).
- •6. Механизм с прыгающей биметаллической
- •7. Механизм Алексеевского в. В. (рис.14.8)
- •Электромеханические реле времени общие сведения
- •Реле времени с электромагнитным замедлением
- •Работу.
- •Б) Схемы включения реле.
- •Реле с электромагнитным замедлением рэ-100 – рэ-570.
- •Тиристорный пускатель
- •Заключение
- •Электрические аппараты
- •«Самарский государственный технический университет»
- •443100 Г. Самара, ул. Молодогвардейская, 244. Главный корпус Отпечатано в типографии Самарского государственного технического университета
- •443100 Г. Самара, ул. Молодогвардейская, 244. Корпус n 8
6. Механизм с прыгающей биметаллической
пластиной (рис.14.7).
Используется для создания постоянного контактного давления. Биметаллическая пластина упирается и призматические опоры В и С, одна из которых (В) неподвижна, а другая (С) может поворачиваться в шарнире О. В холодном состоянии биметаллическая пластина слегка выгнута вверх и используется для создания постоянного контактного давления. Биметаллическая пластина упирается в призматические опоры В и С, одна из которых (В) неподвижна, а другая (С) может удерживается пружиной П, которая прижимает подвижную опору С к упору А. При нагревании биметаллическая пластина изгибается вниз. При температуре срабатывания она скачком переходит в нижнее, также выгнутое положение, встречает штифт размыкающего контакта и размыкает контакты. После остывания пластина, также скачком, возвращается в исходное положение и контакты замыкаются. В этой конструкции контактное давление остается неизменным до момента размыкания контактов.
7. Механизм Алексеевского в. В. (рис.14.8)
Механизм представляет собой оригинальную конструкцию с ,,прыгающей” контактной группой.
Биметаллический элемент выполнен в виде плоской пластины 1, конец которой закреплен неподвижно, а другой может перемещаться между упорами 4 и 5 (рис.14.8). В холодном состоянии пластина удерживается у верхнего упора плоской изогнутой пружинной рессоркой 2, которая одновременно прижимает к нижнему контактному колодку 3, несущую контакты. На концах рессорки имеются специальные просечки, которыми она надевается на соответствующие выступы пластины и колодки. Благодаря этому рессорка может свободно поворачиваться вокруг опорных ребер биметаллической пластины и колодки.
Нагревание биметаллической пластины может быть косвенным, непосредственным или комбинированным. Усилие, развиваемое при этом пластиной, направлено противоположно удерживающему усилию рессорки.
При
некоторой температуре пластины её
усилие
становится
больше удерживающего усилия
,
создаваемой рессоркой, и пластина
отходит от верхнего упора. При этом и
усилие рессорки и усилие биметаллической
пластины
будут уменьшаться, но выключающее усилие
механизма
может
быть получено возрастающим, вследствие
чего биметаллическая пластина, отойдя
от верхнего упора, обязательно дойдет
до нижнего упора.
В зависимости от конкретного назначения механизма можно выбрать усилие рессорки и положение упоров такими, что его возвращение будет автоматическим или ручным.
Этот механизм успешно используется в ряде электрических аппаратов: автоматических предохранителях, тепловых реле и многих других.
Одной из основных характеристик тепловых реле является токовременная характеристика, представляющая зависимость времени срабатывания реле от тока, протекающего через него. Обычно для удобства сравнения этих характеристик между собой, ток реле выражают в относительных единицах – в виде отношения тока реле к допускаемому току , т. е.
П
9 10
Рис.14.1.Способы нагрева биметалла.
Рис.14.2.Механизм с биметаллической защелкой
.
Рис.14.3.Механизм теплового реле времени.
Рис.14.4.Измерительный орган регулятора температуры.
Рис.14.5.Биметаллический термометр.
Рис.14.6.Механизм с «прыгающим»
контактом
Рис.14.7.Механизм с «прыгающей»
биметаллической пластиной
Рис.14.8.Механизм В.В. Алексеевского
Рис.14.9. Типовые токовременные характеристики тепловых реле ТРА и ТРВ, снятые от «холодного» состояния реле.
На рис. 14.9 представлены типовые токовременные характеристики тепловых реле, предназначенных для защиты электрических машин от перегрузок.
Тепловые реле, защищающие электрические машины от перегрузок, должны иметь определенные токовременные характеристики, отвечающие следующим основным требованиям:
а) промежуток времени отключения при перегрузках должен быть таким, в течение которого перегрев защищаемой машины не превышает допустимой величины;
б) время срабатывания реле не должно быть слишком мало с тем, чтобы полнее использовать перегрузочную способность защищаемой машины;
в) возможность прямого пуска от сети асинхронных двигателей.
Рис.14.10.Схематичное устройство реле ТТ-10
Для надежной защиты электрической машины от перегрузок необходимо, чтобы токовременная характеристика реле как можно ближе располагалась к тепловой (перегрузочной) характеристике машины, проходя ниже и не пересекаясь с ней.
Существенным недостатком тепловых реле является зависимость их характеристик от температуры окружающей среды. Такая зависимость может привести к тому, что, например, при температуре 80 – 90° С реле может сработать даже при отсутствии тока. Поэтому для получения благоприятной защитной характеристики необходимо, чтобы температура окружающей среды для защищаемого объекта (электрической машины) и для реле совпадала, или чтобы биметаллический механизм реле работал при более высоких температурах – порядка110 - 120° С.
Среди конструкций тепловых реле с биметаллом наибольшее распространение получили реле с биметаллическими пластинами. Так на рис.14.10 представлено схематическое устройство теплового реле с биметаллической пластинкой. При нагреве от обтекаемого током элемента 2, биметаллическая пластинка 1 изгибается. При определенной температуре (температуре срабатывания) пластинка изгибается настолько, что освобождает защелку 3 подвижного контакта, который под действием пружины 4 поворачивается и размыкает контакты 5 реле. Реле же не имеет самовозврата, возврат контактов ручной, осуществляется кнопкой 6 и может быть произведен только после достаточного остывания биметаллической пластинки (через 15 – 90 с.). Нагревательный элемент является сменным, и подбором соответствующего элемента осуществляется настройка реле. Так для реле ТТ – 10, 11, 12 имеется 54 стандартных нагревательных элемента на токи от 0,6 до 150 А.
В большинстве случаев такие тепловые реле не обеспечивают защиты от токов короткого замыкания, и их нагревательные элементы могут перегореть от токов короткого замыкания до того, как реле сработает. Имеются конструкции тепловых реле со встроенными электромагнитными элементами, срабатывающими без выдержки времени от токов короткого замыкания.
Некоторые конструкции реле, встраиваемые в магнитные пускатели, снабжаются регулировочными устройствами, предназначенными для компенсации производственных отклонений. Такими являются реле типа РТ.
Современные электротепловые токовые реле РТЛ-1000 и РТЛ-2000 предназначены для защиты трехфазных асинхронных электродвигателей с короткозамкнутым ротором от перегрузок недопустимой продолжительности и от токов, возникающих при выпадении одной из фаз. Применяются в схемах управления электроприводами переменного тока с f=50;60Гц, напряжением до 660В, постоянного тока до 440В. Реле пригодны в системах управления с применением микропроцессорной техники.
Различные типы РТЛ-1000 с номинальным током 25А позволяют иметь регулируемый ток несрабатывания от (0,1….0,17) Iн в реле типа РТЛ-1001 до (18…25) Iн в реле РТ2053до (663…86) в реле РТЛ-2063/4/.
