- •«Самарский государственный технический университет»
- •Элентрические и электронные аппараты Конспект лекций
- •Раздел 1. Основы теории электрических аппаратов
- •Введение. Предмет и задачи. Литература и госТы, определения и классификация. Состояния и перспективы развития. Области применения, классификация электромагнитов, расчет магнитных полей.
- •Классификация магнитных цепей постоянного и переменного токов. Характеристики магнитномягких материалов
- •Классификация магнитных цепей
- •Характеристики некоторых магнитномягких материалов
- •Б. Полюса цилиндрической формы
- •Расчет магнитных проводимостей воздушного зазора по методу суммирования простых объемных фигур поля
- •Расчет магнитных проводимостей воздушных путей графическим методом
- •Определение магнитной проводимости воздушного зазора при постоянном магнитном напряжении между ферромагнитными поверхностями,
- •Магнитная цепь электромагнитов постоянного тока
- •Магнитная цепь электромагнитов переменного тока
- •Катушки электромагнитов
- •Магнитные материалы для электромагнитов постоянного и переменного тока
- •Лекция №4.
- •Сила тяги электромагнитов
- •Лекция № 5.
- •Динамика и время срабатывания электромагнитов
- •Лекция №6.
- •6. Электродинамические усилия (эду), методы расчета. Электродинамическая устойчивость. Нагрев электроаппаратов. Нормы нагрева, термическая устойчивость.
- •Силы втягивания дуги (проводника) в стальную решетку
- •Электродинамическая устойчивость аппаратов
- •Допустимые максимальные температуры электрических аппаратов в нормальном режиме и при коротком замыкании изолированные проводники электрического тока в нормальном режиме
- •Изолированные и неизолированные т0к0ведущие части аппаратов при коротких замыканиях
- •Применение формулы ньютона для расчета отдачи тепла с наружной поверхности окружающей среде (жидкости, газу)
- •Применение формулы ньютона для рассмотрения устанавливающегося процесса нагрева тела от источников тепла, расположенных внутри тела
- •Основы теории передачи тепла теплопроводностью основной закон теплопроводности био - фурье
- •Передача тепла теплопроводностью сквозь толщу стенки, ограниченную двумя плоскостями
- •Процесс нагрева при коротком замыкании. Понятие 0 термической устойчивости
- •Жидкометаллические контакты
- •Физические особенности дуг030г0 разряда при высокой плотности газовой среды
- •Гашение электрических дуг в цепях постоянного тока
- •Лекция №9.
- •9. Горения и гашения дуги переменного тока: в условиях активной деионизации, высокого напряжения, низкого напряжения.
- •А. Открытая дуга переменного тока при высоком напряжении источника
- •Б. Дуга переменного тока в условиях активной деионизации
- •В. Дуга переменного тока в условиях отключения цепей низкого напряжения
- •Усилитель с самонасыщением (мус)
- •Параметры мус Статические параметры
- •Нагрев плавкой вставки при длительной нагрузке
- •Конструкция предохранителей низкого напряжения
- •Выбор предохранителей
- •Тема лекции:
- •12. Контакторы постоянного и переменного тока, параметры, требования. Магнитные пускатели.
- •1. Общие сведения
- •2. Устройство контактора с управлением от сети постоянного тока
- •3. Контакторы переменного тока
- •3.1. Контактная система
- •3.2. Гашение дуги в контакторах переменного тока
- •3.3. Дугогасительные системы высокочастотных контакторов
- •3.4. Электромагнитный механизм контактора переменного тока
- •4. Магнитные пускатели
- •4.1. Требования к пускателям и условия их работы
- •4.2. Конструкция и схема включения пускателя
- •5. Современные контакторы, выпускаемые отечественной промышленностью
- •6. Современные магнитные пускатели, выпускаемые отечественной промышленностью
- •6.2. Технические параметры
- •Электромагнитные реле (тока и напряжения, для энергосистем и электроприводов). Общие сведения
- •Реле напряжения
- •Лекция №14. Тема лекции:
- •14. Тепловое реле. Устройство, характеристики. Реле времени.
- •1.Тепловые реле.
- •1. Механизм с биметаллической защелкой (рис.14.2).
- •2. Механизм теплового реле времени. (рис.14.3)
- •5. Механизм с «прыгающим контактом» (рис. 14.6).
- •6. Механизм с прыгающей биметаллической
- •7. Механизм Алексеевского в. В. (рис.14.8)
- •Электромеханические реле времени общие сведения
- •Реле времени с электромагнитным замедлением
- •Работу.
- •Б) Схемы включения реле.
- •Реле с электромагнитным замедлением рэ-100 – рэ-570.
- •Тиристорный пускатель
- •Заключение
- •Электрические аппараты
- •«Самарский государственный технический университет»
- •443100 Г. Самара, ул. Молодогвардейская, 244. Главный корпус Отпечатано в типографии Самарского государственного технического университета
- •443100 Г. Самара, ул. Молодогвардейская, 244. Корпус n 8
4.2. Конструкция и схема включения пускателя
Наибольшее распространение получили пускатели серии ПМЕ и ПА. С учетом условий работы пускателя оказалось возможным, используя двукратный разрыв цепи, отказаться от применения громоздких дугогасительных устройств в виде решетки или камеры магнитного дутья. Широко применяются торцевые контакты с металлокерамикой. Подвижный контакт выполняется мостикового типа с самоустанавливанием. Прямоходовой электромагнит имеет Ш-образный сердечник и якорь. Короткозамкнутый виток расположен на двух крайних стержнях сердечника.
При токах, больших 25 А, хорошо себя зарекомендовала система пускателей серии ПА, в которой ход контакта примерно в 2,5 раза меньше, чем ход якоря электромагнита. Для защиты двигателя от перегрузки в двух фазах устанавливаются тепловые реле. В некоторых типах пускателей, например, в серии П, тепловые реле расположены на одной панели с контактором. В этих случаях обычно используются реле типа РТ тепловых реле.
Более совершенную
тепловую защиту дают реле типа ТРП и
ТРИ, которые монтируются вне контактора
пускателя. Схема включения
нереверсивного пускателя показана на
рис. 4.1. Главные (линейные) контакты
КМ1, КМ2, КМ3 включаются в рассечку
проводов, питающих двигатель. В проводах
двух фаз включаются также нагревательные
элементы тепловых реле ТРП-1 и ТРП-2.
Катушка электромагнита К подключается
к сети через размыкающие контакты
тепловых реле и кнопки управления. При
нажатии кнопки «Пуск» напряжение на
катушку подается через замкнутые
контакты кнопки «Стоп» и замкнутые
контакты кнопки «Пуск». После притяжения
якоря электромагнита замыкается
блок-контакт КМ, шунтирующий
кнопку «Пуск». Это дает возможность
отпустить
пусковую кнопку.
Для отключения пускателя нажимается кнопка «Стоп». При перегрузке двигателя срабатывают тепловые реле, которые разрывают цепь катушки К. Якорь электромагнита отпадает. Происходит отключение пускателя. Высокий коэффициент возврата электромагнитного механизма переменного тока позволяет осуществить защиту двигателя от понижения напряжения питания (электромагнит отпускает якорь при напряжении 60-70% ).
Если
напряжение сети возрастет до своего
номинального значения, то
самопроизвольного включения пускателя
не произойдет, так как при отключении
блок-контакт КМ
размыкается
и цепь катушки К
разрывается.
Р и с. 12.5. Схема включения магнитного пускателя
Схема включения реверсивного пускателя приведена на рис. 4.3. Кнопка управления «Вперед» имеет замыкающие контакты 1-2 и размыкающие контакты 4-6. Аналогичные контакты имеет кнопка пуска двигателя в обратном направлении («Назад»).
Соответственно,
индекс В отнесен к элементам,
участвующим при работе «Вперед», и
индекс Н – при работе «Назад». При пуске
«Вперед» замыкаются контакты 1-2 этой
кнопки и процесс протекает так же,
как и у нереверсивного пускателя, с той
лишь разницей, что цепь катушки Кв
замыкается через размыкающие контакты
1-6 кнопки «Назад».
Р и с. 12.6. Схема включения реверсивного пускателя
Одновременно размыкаются размыкающие контакты 4-6 кнопки «Вперед», при этом разрывается цепь катушки КВ. При нажатии кнопки «Назад» вначале размыкаются контакты 1-6, обесточивается катушка КВ и отключается пускатель «Вперед». Затем контактами 4-3 запускается электромагнит пускателя «Назад». При одновременном нажатии кнопок «Вперед» и «Назад» ни один из пускателей не будет включен. Блок-контакты в настоящее время выпускаются в виде унифицированных блоков, которые могут устанавливаться в различных пускателях.
