Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Предмет и задачи информатики.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
822.78 Кб
Скачать

15. Алгебра логики высказывание таблица истинности

Алгебра логики (алгебра высказываний) — раздел математической логики, в котором изучаются логические операции над высказываниями[1]. Чаще всего предполагается (т. н. бинарная или двоичная логика, в отличие от, например, троичной логики), что высказывания могут быть только истинными или ложными.

Высказывание — термин математической логики, обозначающий формализованную структурированную запись мысли с помощью буквенных символов и логических связок, рассматриваемую с точки зрения истинностных значений. Это утверждение, для которого оценивается логическое значение: ложь или истина[1]. Логическое высказывание принято обозначать заглавными латинскими буквами. Является основным объектом логики высказываний.

(Виды высказываний

Логические высказывания принято подразделять на два вида: элементарные логические высказывания и составные логические высказывания.

Составное логическое высказывание — это высказывание, образованное из других высказываний с помощью логических связок.

Логическая связка — это любая логическая операция над высказыванием. Например, употребляемые в обычной речи слова и словосочетания «не», «и», «или», «если… , то», «тогда и только тогда» являются логическими связками.

Элементарные логические высказывания — это высказывания не относящиеся к составным.

Примеры: «Петров — врач», «Петров — шахматист» — элементарные логические высказывания. «Петров — врач и шахматист» — составное логическое высказывание, состоящие из двух элементарных высказываний, связанных между собой при помощи связки «и».

Связь с математической логикой

Обычная логика двухзначна, то есть приписывает высказываниям только два возможных значения: истинно оно или ложно.

Пусть  — высказывание. Если оно истинно, то пишут , если ложно, то .

Тождественно истинное высказывание обозначают символом 1, тождественно ложное — символом 0.

Существуют также многозначные логики (Яна Лукасевича, С. Клини и др.).

Основные операции над логическими высказываниями

Отрицание логического высказывания — логическое высказывание, принимающее значение «истинно», если исходное высказывание ложно, и наоборот.

Конъюнкция двух логических высказываний — логическое высказывание, истинное только тогда, когда они одновременно истинны.

Дизъюнкция двух логических высказываний — логическое высказывание, истинное только тогда, когда хотя бы одно из них истинно.

Импликация двух логических высказываний A и B — логическое высказывание, ложное только тогда, когда B ложно, а A истинно.

Равносильность (эквивалентность) двух логических высказываний — логическое высказывание, истинное только тогда, когда они одновременно истинны или ложны.

Кванторное логическое высказывание с квантором всеобщности ( ) — логическое высказывание, истинное только тогда, когда для каждого объекта x из заданной совокупности высказывание A(x) истинно.

Кванторное логическое высказывание с квантором существования ( ) — логическое высказывание, истинное только тогда, когда в заданной совокупности существует объект x, такой, что высказывание A(x) истинно.)

Таблица истинности — это таблица, описывающая логическую функцию.

Под «логической функцией» в данном случае понимается функция, у которой значения переменных (параметров функции) и значение самой функции выражают логическую истинность. Например, в двузначной логике они могут принимать значения «истина» либо «ложь» ( либо , либо ).

Табличное задание функций встречается не только в логике, но для логических функций таблицы оказались особенно удобными, и с начала XX века за ними закрепилось это специальное название. Особенно часто таблицы истинности применяются в булевой алгебре и в аналогичных системах многозначной логики

Таблицы истинности для некоторых троичных логических функций

x

2

1

0

2

1

0

2

1

0

y

2

2

2

1

1

1

0

0

0

Минимум

2

1

0

1

1

0

0

0

0

x

2

1

0

2

1

0

2

1

0

y

2

2

2

1

1

1

0

0

0

Максимум Минус.

2

2

2

2

1

1

2

1

0

x

2

1

0

2

1

0

2

1

0

y

2

2

2

1

1

1

0

0

0

Webb(x,y)

0

0

0

0

2

2

0

2

1

16.Логическое сложение ,или дизъюнкция ( + или V)