- •Структура цикла икм-30
- •2. Телефонная нагрузка. Основные понятия и методы расчета.
- •4. Коммутация пакетов. Хаб и коммутатор пакетов, их различия и сходство. Коллизии и домены коллизий..
- •5. Интенсивность обслуженной и поступающей нагрузки. Вывод выражения для интенсивности обслуженной нагрузки и теоремы о количественной оценке интенсивности поступающей нагрузки.
- •6. Коммутатор. Цифровые коммутаторы. Координаты коммутации. Принципы построения цифровых коммутационных полей (одно- и многокаскадные, Клоза, итерационный принцип).
- •7. Цифровые пространственные коммутаторы. Варианты реализации. Временные диаграммы работы.
- •8. Цифровые временные коммутаторы. Пример реализации на микросхемах озу. Временные диаграммы работы.
- •9. Цифровые пространственно-временные коммутаторы. Пример реализации коммутатора емкостью 8х8 потоков е1. Временные диаграммы работы.
- •10. История сетей связи
- •11. Разделенные и неразделенные структуры построения коммутационных полей и их применяемость.
- •12. Реверсивные коммутационные поля цифровых атс. Основные примущества, алгоритмы реализации и функционирования.
- •13. Маршрутизаторы. Принципы построения и основные алгоритмы функционирования. Протоколы маршрутизации.
- •14. Системы коммутации с распределенным управлением. Атсэ itt-1240. Алгоритм установления соединения и структура построения коммутационного поля.
- •15. Расчет объема оборудования и качества обслуживания смо с отказами. Первая формула Эрланга.
- •16. Базовая станция сети подвижной радиосвязи. Устройство и основные алгоритмы функционирования. Взаимодействие с центральной атс
- •17.Требования к речевому и адресному озу пространственно-временного коммутатора по емкости и быстродействию.
- •18. Структура атсэ с децентрализованным управлением. Взаимодействие управляющих устройств в процессе установления соединения.
- •19. Устройства 2-го и 3-го уровней модели osi. Таблицы мас- адресов и таблицы маршрутизации..
- •20. Управляющие устройства цифровых систем коммутации. Программное обеспечение современной атсэ и его структура.
- •21. Расчёт блокировок коммутационных полей большой емкости методом вероятностных графов. Основные допущения и область применения метода.
- •22. Коммутация и концентрация телефонной нагрузки в современных сетях сотовой связи.
- •23.Виды коммутационного оборудования современных сетей сотовой связи.
- •24. Международная стандартизация в области телефонии. Основные институты стандартизации и нормативно-технические документы. Нормы качества обслуживания на телефонных сетях рф.
- •25. Алгоритмы установления соединения в коммутационных полях цифровых атс. Режимы искания.
- •26. Семиуровневая модель вос(osi) Соотношение с моделью tcp/Ip.
- •27. Сетевая модель tcp/ip
- •28. Принципы и средства коммутации в спр. Подсистема коммутации базовой станции.
- •29. Телефонная нагрузка и методы ее концентрации в сетях.
- •30. Адресное запоминающее устройство цифрового коммутатора каналов и таблицы мас-адресов и маршрутизации коммутаторов пакетов. Принципы записи и модификации управляющей информации.
- •Левая задача
- •Левые задачи
4. Коммутация пакетов. Хаб и коммутатор пакетов, их различия и сходство. Коллизии и домены коллизий..
При коммутации пакетов все передаваемые пользователем сообщения разбиваются в исходном узле на сравнительно небольшие части, называемые пакетами. Пакеты имеют переменную длину, но в узких пределах, например от 46 до 1500 байт. Каждый пакет снабжается заголовком, в котором указывается адресная информация, необходимая для доставки пакета на узел назначения, а также номер пакета, который будет использоваться узлом назначения для сборки сообщения. Пакеты транспортируются по сети как независимые информационные блоки. Коммутаторы сети принимают пакеты от конечных узлов и на основании адресной информации передают их друг другу, а в конечном итоге — узлу назначения. Коммутаторы пакетной сети отличаются от коммутаторов каналов тем, что они имеют внутреннюю буферную память для временного хранения пакетов, если выходной порт коммутатора в момент принятия пакета занят передачей другого пакета. В этом случае пакет находится некоторое время в очереди пакетов в буферной памяти выходного порта, а когда до него дойдет очередь, он передается следующему коммутатору. Концентратор - простейшее устройство, обеспечивающее взаимодействие компьютеров в сети. Каждый компьютер подключается к концентратору с помощью кабеля Ethernet. Вся информация, отправляемая с одного компьютера на другой в локальной сети, проходит через концентратор. Концентратор не может определить источник или место назначения полученных данных, поэтому пересылает их всем подключенным к нему компьютерам, включая и тот, с которого была отправлена информация. Концентратор может либо передавать, либо получать данные, но не может делать и то и другое одновременно. Поэтому концентраторы работают медленнее, чем коммутаторы. Концентраторы являются наименее сложными и наименее дорогими устройствами для построения сети. Коммутаторы работают как концентраторы, но при этом могут определить место назначения полученных данных, поэтому передают их только тем компьютерам, которым эти данные предназначаются (в отправляемый кадр добавляется mac-адрес компьютера получателя). Можно сказать, что коммутатор "работает" на канальном уровне модели OSI, используя кадры. Коммутаторы могут получать и передавать данные одновременно, поэтому они работают быстрее концентраторов. Если в локальной сети насчитывается четыре и более компьютера или требуется использовать сеть для действий, предполагающих обмен большими объемами информации между компьютерами следует выбрать коммутатор вместо концентратора. Коллизия— в терминологии компьютерных и сетевых технологий, наложение двух и более кадров от станций, пытающихся передать кадр в один и тот же момент времени. Доме́н колли́зий— это часть сети ethernet, все узлы которой конкурируют за общую разделяемую среду передачи и, следовательно, каждый узел которой может создать коллизию с любым другим узлом этой части сети. Другими словами, это сегмент сети, имеющий общий физический уровень, в котором доступ к среде передачи может получать только один абонент одновременно. Задержка распространения сигнала между станциями, либо одновременное начало передачи вызывает возникновение коллизий, которые требуют специальной обработки и снижают производительность сети. Чем больше узлов в таком сегменте — тем выше вероятность коллизий. Для уменьшения домена коллизий применяется сегментация физической сети с помощью мостов и других сетевых устройств более высокого уровня.
