Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
спр 2012.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
20.48 Mб
Скачать
  1. ЦСП ИКМ-30, принцип построения, функциональная схема и структура группового цифрового сигнала (цикла).

  2. Понятие телефонной нагрузки, единицы измерения нагрузки. Поступающая, обслуженная, потерянная нагрузка.

  3. Основные принципы передачи и коммутации сообщений, пакетов, каналов. Виртуальный и датаграммный методы передачи и коммутации пакетов.

  4. Коммутация пакетов. Хаб и коммутатор пакетов, их различия и сходство. Коллизии и домены коллизий.

  5. Интенсивность поступающей нагрузки. Вывод выражения для количественной оценки интенсивности поступающей нагрузки.

  6. Коммутатор. Цифровые коммутаторы. Координаты коммутации. Принципы построения цифровых коммутационных полей (одно и многокаскадные, итерационный принцип).

  7. Цифровые пространственные коммутаторы каналов. Варианты реализации. Временные диаграммы работы.

  8. Цифровые временные коммутаторы каналов. Пример реализации на микросхемах ОЗУ. Временные диаграммы работы.

  9. Цифровые пространственно-временные коммутаторы каналов. Пример реализации коммутатора емкостью 8х8 потоков Е1. Временные диаграммы работы.

  10. История, современное состояние и перспективы развития сетей связи. Мультисервисные сети связи.

  11. Разделенные и неразделенные структуры построения коммутационных полей. Цифровая АТС, структурная схема и основные алгоритмы функционирования.

  12. Реверсивные коммутационные поля цифровых АТС. Основные преимущества, алгоритмы реализации и функционирования.

  13. Маршрутизаторы. Принципы построения и основные алгоритмы функционирования. Протоколы маршрутизации.

  14. Системы коммутации с распределенным управлением. АТСЭ “ITT-1240”. Алгоритм установления соединения и структура построения коммутационного поля.

  15. Расчет объема оборудования и качества обслуживания СМО с отказами. Первая формула Эрланга.

  16. Базовая станция сети подвижной радиосвязи. Устройство и основные алгоритмы функционирования. Взаимодействие с центральной АТС.

  17. Требования к речевому и адресному ОЗУ пространственно-временного коммутатора каналов по емкости и быстродействию.

  18. Структура АТСЭ с децентрализованным управлением. Взаимодействие управляющих и телефонных устройств станции в процессе установления соединения.

  19. Устройства 2-го и 3-го уровней модели OSI. Таблицы МАС- адресов и таблицы маршрутизации.

  20. Управляющие устройства цифровых систем коммутации. Программное обеспечение современной АТСЭ и его структура.

  21. Расчет блокировок коммутационных полей большой емкости методом вероятностных графов. Основные допущения и область применения метода.

  22. Коммутация и концентрация телефонной нагрузки в современных сетях сотовой связи.

  23. Виды коммутационного оборудования современных сетей сотовой связи.

  24. Международная стандартизация в области телефонии. Основные институты стандартизации и нормативно технические документы. Нормы качества обслуживания на телефонных сетях РФ.

  25. Алгоритмы установления соединения в коммутационных полях цифровых АТС. Режимы искания.

  26. Семиуровневая модель ВОС. Назначение каждого уровня и функции им реализуемые. Соотношение с моделью TCP/IP.

  27. Стек протоколов TCP/IP. Назначение каждого уровня и функции им реализуемые.

  28. Принципы и средства коммутации в сетях связи с подвижными объектами. Подсистема коммутации базовой станции.

  29. Телефонная нагрузка и методы ее концентрации в сетях связи с подвижными объектами.

  30. Адресное запоминающее устройство цифрового коммутатора каналов и таблицы МАС-адресов и маршрутизации коммутаторов пакетов. Принципы записи и модификации управляющей информации.

  1. Структура цикла икм-30

Рассмотрим структуру кадра передачи ЦСП  ИКМ - 30. Данный поток называется первичным цифровым потоком и организуется объединением 30-ти информационных ОЦК.

Рис. 6.34. Структура кадра ЦСП   ИКМ -  30  

Канальные интервалы КИ1-КИ15, КИ17-КИ31 отведены под передачу информационных сигналов. КИ0 и КИ16 - под передачу служебной информации. Интервалы КИ0 в четных циклах предназначаются для передачи циклового синхросигнала (ЦСС), имеющего вид 0011011 и занимающего интервалы Р2 - Р8. В интервале Р1 всех циклов передается информация постоянно действующего канала передачи данных (ДИ). В нечетных циклах интервалы P3 и Р6 КИ0 используются для передачи информации о потере цикловой синхронизации (Авар. ЦС) и снижении остаточного затухания каналов до значения, при котором в них может возникнуть самовозбуждение (Ост. зат). Интервалы Р4, Р5, Р7 и Р8 являются свободными, их занимают единичными сигналами для улучшения работы выделителей тактовой частоты

В интервале КИ16 нулевого цикла (Ц0) передается сверхцикловой синхросигнал вида 0000 (Р1 - Р4), а также сигнал о потере сверхцикловой синхронизации (Р6 - Авар. СЦС). Остальные три разрядных интервала свободны. В канальном интервале КИ16 остальных циклов (Ц1 - Ц15) передаются сигналы служебных каналов СК1 и СК2, причем в Ц1 передаются СК для 1-го и 16-го каналов ТЧ, в Ц2 - для 2-го и 17-го и т.д. Интервалы Р3, Р4, Р6 и Р7 свободны.

2. Телефонная нагрузка. Основные понятия и методы расчета.

Суммарное время обслуживания вызовов принято называть телефонной нагрузкой. Различают: поступающую, обслуженную и потерянную телефонные нагрузки.

Обслуженная коммутационной системой за промежуток времени [t1, t2) нагрузка Y(t1, t2) представляет собой сумму времен занятия всех выходов коммутационной системы, обслуживающей поступающий на ее выходы поток вызовов за рассматриваемый промежуток времени. Обслуженной телефонной нагрузкой Y(t1, t2) за промежуток времени [t1, t2) называется суммарное время занятия всех V соединительных путей коммутационной системы за этот промежуток времени. Таким образом,

Поступающей телефонной нагрузкой Y (t1; t2) за промежуток времени [t1; t2) называется нагрузка, которая была бы обслужена, если бы каждому поступившему вызову было тотчас предоставлено соединение со свободным выходом.

Потерянной телефонной нагрузкой Y (t1; t2) за промежуток времени [t1; t2) называется часть поступающей телефонной нагрузки, не обслуженная из-за отсутствия свободных соединительных путей в коммутационной системе, т. е. представляет собой разность между поступающей и обслуженной нагрузкой:

Размерность телефонной нагрузки — время. Чтобы подчеркнуть, что величина нагрузки складывается из промежутков времени, соответствующих отдельным занятиям, за единицу измерения телефонной нагрузки принято часо-занятие (ч-зан.). Одно часо-занятие — это такая нагрузка, которая может быть обслужена одним соединительным устройством при его непрерывном занятии в течение одного часа. Телефонная нагрузка не является по времени, величиной постоянной. Она изменяется по месяцам, года дням недели и часам суток. Чтобы коммутационное оборудование оказалось в состоянии обслужить нагрузку, расчет ее объема следует производить исходя из нагрузки в тот час, когда она является, наибольшей. Непрерывный 60-минутный промежуток суток, в течение которого нагрузка максимальна, называется часом наибольшей телефонной нагрузки (ЧНН).

Математическое ожидание нагрузки в единицу времени (обычно за час) называется интенсивностью нагрузки.

За единицу измерения интенсивности телефонной нагрузки принят Эрланг. Один Эрланг (Эрл) — это такая интенсивность нагрузки, при которой в течение одного часа будет обслужена нагрузка в одно часо-занятие (1 Эрл=1 ч-зан./ч).

3. Основные принципы передачи и коммутации сообщений, пакетов, каналов. Виртуальный и датаграммный методы передачи и коммутации пакетов. При коммутации каналов коммутационная сеть образует между конечными узлами непрерывный составной физический канал из последовательно соединенных коммутаторами промежуточных канальных участков. Условием того, что несколько физических каналов при последовательном соединении образуют единый физический канал, является равенство скоростей передачи данных в каждом из составляющих физических каналов. Равенство скоростей означает, что коммутаторы такой сети не должны буферизовать передаваемые данные. В сети с коммутацией каналов перед передачей данных всегда необходимо выполнить процедуру установления соединения, в процессе которой и создается составной канал. И только после этого можно начинать передавать данные. При коммутации пакетов все передаваемые пользователем сообщения разбиваются в исходном узле на сравнительно небольшие части, называемые пакетами. Пакеты имеют переменную длину, но в узких пределах, например от 46 до 1500 байт. Каждый пакет снабжается заголовком, в котором указывается адресная информация, необходимая для доставки пакета на узел назначения, а также номер пакета, который будет использоваться узлом назначения для сборки сообщения. Пакеты транспортируются по сети как независимые информационные блоки. Коммутаторы сети принимают пакеты от конечных узлов и на основании адресной информации передают их друг другу, а в конечном итоге — узлу назначения. Коммутаторы пакетной сети отличаются от коммутаторов каналов тем, что они имеют внутреннюю буферную память для временного хранения пакетов, если выходной порт коммутатора в момент принятия пакета занят передачей другого пакета. В этом случае пакет находится некоторое время в очереди пакетов в буферной памяти выходного порта, а когда до него дойдет очередь, он передается следующему коммутатору. Коммутация сообщений по своим принципам близка к коммутации пакетов. Под коммутацией сообщений понимается передача единого блока данных между транзитными компьютерами сети с временной буферизацией этого блока на диске каждого компьютера. Сообщение в отличие от пакета имеет произвольную длину, которая определяется не технологическими соображениями, а содержанием информации, составляющей сообщение. Транзитные компьютеры могут соединяться между собой как сетью с коммутацией пакетов, так и сетью с коммутацией каналов. Сообщение хранится в транзитном компьютере на диске, причем довольно продолжительное время, если компьютер занят другой работой или сеть временно перегружена. По такой схеме обычно передаются сообщения, не требующие немедленного ответа, чаще всего сообщения электронной почты. Датаграммный метод коммутации пакетов эффективен для передачи коротких сообщений. Он не требует громоздкой процедуры установления соединения между абонентами. Термин "датаграмма" применяют для обозначения самостоятельного пакета, движущегося по сети независимо от других пакетов. Пакеты доставляются получателю различными маршрутами. Эти маршруты определяются сложившейся динамической ситуаций на сети. Каждый пакет снабжается необходимым служебным маршрутным признаком, куда входит и адрес получателя. Пакеты поступают на прием не в той последовательности, в которой они были переданы, поэтому приходится выполнять функции, связанные со сборкой пакетов. Получив датаграмму, узел коммутации направляет ее в сторону смежного узла, максимально приближенного к адресату. Когда смежный узел подтверждает получение пакета, узел коммутации стирает его в своей памяти. Если подтверждение не получено, узел коммутации отправляет пакет в другой смежный узел, и так до тех пор, пока пакет не будет отправлен. Все узлы, окружающие данный узел коммутации, ранжируются по степени близости к адресату, и каждому присваивается 1, 2 и т.д. ранг. Пакет сначала посылается в узел первого ранга, при неудаче - в узел второго ранга и т.д. Эта процедура называется алгоритмом маршрутизации. Существуют алгоритмы, когда узел передачи выбирается случайно, и тогда каждая датаграмма будет идти по случайной траектории.

Виртуальный метод коммутации пакетов предполагает предварительное установление маршрута передачи всего сообщения от отправителя до получателя с помощью специального служебного пакета - запроса вызова. Для этого пакета выбирается маршрут, который в случае согласия получателя этого пакета на соединение закрепляется для прохождения по нему всего трафика. Пакет запроса на соединение как бы прокладывает через сеть путь , по которому пойдут все пакеты, относящиеся к этому вызову. Метод называется виртуальным потому, что здесь не коммутируется реальный физический тракт (как, например, в телефонной сети), а устанавливается логическая связка между отправителем и получателем, - т.е. коммутируется виртуальный (воображаемый) тракт.

В виртуальной сети абоненту-получателю направляется служебный пакет, прокладывающий виртуальное соединение. В каждом узле этот пакет оставляет распоряжение вида: пакеты k-го виртуального соединения, пришедшие из i-го канала, следует направлять в j-й канал. Тем самым виртуальное соединение существует только в памяти управляющего компьютера. Дойдя до абонента-получателя, служебный пакет запрашивает у него разрешение на передачу, сообщив, какой объем памяти понадобится для приема. Если его компьютер располагает такой памятью и свободен, то посылается согласие абоненту-отправителю на передачу сообщения. Получив подтверждение, абонент-отправитель приступает к передаче сообщения обычными пакетами.

Пакеты беспрепятственно проходят друг за другом по виртуальному соединению и в том же порядке попадают абоненту-получателю, где, освободившись от заголовков и концевиков, образуют передаваемое сообщение. Виртуальное соединение может существовать до тех пор, пока отправленный одним из абонентов специальный служебный пакет не сотрет инструкции в узлах.Режим виртуальных соединений эффективен при передаче больших массивов информации.

Преимущества режима виртуальных соединений перед датаграммным заключается в обеспечении упорядоченности пакетов, поступающих в адрес получателя, и сравнительной простоте управления потоком данных вдоль маршрута в целях ограничения нагрузки в сети, в возможности предварительного резервирования ресурсов памяти на узлах коммутации.

К недостаткам следует отнести отсутствие воздействия изменившейся ситуации в сети на маршрут, который не корректируется до конца связи. Виртуальная сеть в значительно меньшей степени подвержена перегрузкам и зацикливанию пакетов, за что приходится платить худшим использованием каналов и большей чувствительностью к изменению топологии сети.