
- •1. Поле комплексных чисел. Действительная и мнимая части, модуль и аргумент комплексного числа.
- •2. Формула Муавра, корень n-ой степени из комплексного числа. Расширенная комплексная плоскость.
- •4. Ряды функций комплексного переменного: равномерная сходимость, признак Вейерштрасса.
- •Равномерная сходимость:
- •5. Степенной ряд: теорема Абеля, формула Коши-Адамара, область сходимости.
- •6. Функции комплексного переменного: предел, непрерывность и их связь с функциями действительного переменного.
- •7. Дифференцируемые и голоморфные функции комплексного переменного. Условия Коши-Римана.
- •8. Геометрический смысл аргумента и модуля производной. Понятие конформного отображения.
- •9. Интеграл функции комплексного переменного. Первообразная голоморфной функции: локальная первообразная, первообразная вдоль пути, формула Ньютона-Лейбница.
- •10. Гомотопия путей с общими концами и замкнутых путей. Теорема Коши.
- •11. Глобальная теорема существования первообразной для голоморфной функции в односвязной области.
- •12. Теорема Коши для многосвязной области. Интегральная формула Коши.
- •13. Теорема Коши для многосвязной области.
- •15. Свойства голоморфных функций. Гармонические функции. Интегральная формула Коши для производных голоморфной функции.
- •16. Интегральная формула Коши для производных голоморфной функции.
- •17. Теорема Мореры. Функции, голоморфные в смысле Коши, Римана и Вейерштрасса. Теорема Вейерштрасса о рядах голоморфных функций.
- •18. Нули в голоморфной функции и их кратность. Теорема единственности голоморфной функции.
- •19. Аналитическое продолжение: принцип аналитического продолжения.
- •20. Аналитическое продолжение через границу области: лемма о непрерывной продолжении, принцип симметрии Римана-Шварца. Аналитическая функция в смысле Вейерштрасса.
- •21. Ряд Лорана: теорема Лорана, правильная и главная части, теорема единственности, неравенства Коши.
- •2 2. Изолированные особые точки однозначного характера. Теорема Сохоцкого, теорема Пикара.
- •23. Целые и мероморфные функции: теорема Вейерштрасса и теорема Миттаг-Леффлера.
- •24. Изолированные особые точки многозначного характера
- •25. Основные элементарные многозначные функции.
- •26. Вычеты: определение, теорема Коши. Теорема о полной сумме вычетов.
- •27. Интеграл типа Коши.
- •28. Логарифмический вычет. Принцип аргумента и теорема Руше.
- •29. Принцип максимума модуля. Лемма Шварца.
- •30. Теорема Монтеля (принцип компактности). Теорема Гурвица.
15. Свойства голоморфных функций. Гармонические функции. Интегральная формула Коши для производных голоморфной функции.
Из
следует, что внутренние значения голоморфной функции
можно находить (восстановить) по значениям на границе
. Подобные проблемы восстановления функции по граничным значениям возникают в теории краевых задач.
Вспомним, что рациональная функция представляется в виде суммы простейших дробей. К примеру, когда
, то справедливо разложение
. Тогда интегральная формула Коши представляет полный аналог разложения рациональной функции (роль
играет ). Следовательно, голоморфная функция обладает многими свойствами рациональных функций.
Поскольку интегральную формулу Коши можно по параметру неограниченное число раз дифференцировать, то голоморфная функция бесконечно дифференцируема.
Интегральная формула Коши вместо вычисления интеграла разрешает вычислять значения голоморфной функции или значения ее производной. Действительно
16. Интегральная формула Коши для производных голоморфной функции.
Теорема Коши говорит о равенстве интегралов . Поэтому по своему желанию можно вычислять либо левую, либо правую часть равенства. Обычно выбирают ту, которая легче находится. Применим подобные рассуждения для вычисления интеграла , когда - голоморфная на всей комплексной плоскости функция, а - произвольный замкнутый контур
Если точка то подынтегральная функция будет голоморфной в некотором - раздутии . Тогда по теореме 7 .
Если точка то подынтегральная функция будет голоморфной в некоторой проколотой окрестности точки . Каждая окружность с центров в точке гомотопна контуру , так как, не затрагивая точку , можно контур деформировать в указанную окружность. По теореме 6 имеем . Поскольку левая часть последнего равенства не зависит от , то можно записать предельное соотношение
Таким образом, надо найти правую часть последнего равенства.
Следовательно, при имеем формулу , которую называют интегральной формулой Коши. Продифференцировав по обе части приведенной формулы, получим представление для производной . Можно продолжить дифференцирование.
Интегральная формула Коши вместо вычисления интеграла разрешает вычислять значения голоморфной функции или значения ее производной. Действительно
17. Теорема Мореры. Функции, голоморфные в смысле Коши, Римана и Вейерштрасса. Теорема Вейерштрасса о рядах голоморфных функций.
Теорема (Морера ( Th
M)). Если
функция
непрерывна в области
и интеграл от нее по границе
любого треугольника
равен нулю, то
.
Доказательство. Для любой точки
из области
построим круг
.
Введем функцию по формуле
.
Покажем, что
.
Поэтому рассмотрим соответствующее
приращение функции
Тогда
отношение приращений примет вид