
- •Понятие вектор в геометрии отлично от определяемого в алгебре.
- •Общее уравнение плоскости
- •Расстояние от точки до плоскости
- •Угол между плоскостями.
- •Угол между прямой и плоскостью
- •Определение
- •Простейшие свойства
- •Матрица перехода
- •Свойства
- •54. Теорема о превращении линейного пространства в Евклидово.
- •55. Понятие нормы вектора. Свойства нормы (в том числе н-во Коши-Буяновского, н-во треугольника)
- •56. Понятие ортогональности векторов Евклидова пространства. Теорема о линейной независимости ортогональной системы векторов.
- •57. Понятие ортонормированного базиса Евклидова пространства. Необходимое и достаточное условие ортонормированности данного базиса Евклидова пространства.
Определение
Линейное,
или векторное пространство
над полем P —
это непустое
множество L,
на котором введены операции
сложения, то есть каждой паре элементов множества
ставится в соответствие элемент того же множества, обозначаемый
и
умножения на скаляр (то есть элемент поля P), то есть любому элементу
и любому элементу
ставится в соответствие элемент из , обозначаемый
.
При этом на операции накладываются следующие условия:
, для любых (коммутативность сложения);
, для любых
(ассоциативность сложения);
существует такой элемент
, что
для любого (существование нейтрального элемента относительно сложения), в частности L не пусто;
для любого существует такой элемент
, что
(существование противоположного элемента).
(ассоциативность умножения на скаляр);
(умножение на нейтральный (по умножению) элемент поля P сохраняет вектор).
(дистрибутивность умножения на вектор относительно сложения скаляров);
(дистрибутивность умножения на скаляр относительно сложения векторов).
Элементы множества L называют векторами, а элементы поля P — скалярами. Свойства 1-4 совпадают с аксиомами абелевой группы.
Простейшие свойства
Векторное пространство является абелевой группой по сложению.
Нейтральный элемент является единственным, что вытекает из групповых свойств.
для любого .
Для любого противоположный элемент является единственным, что вытекает из групповых свойств.
для любого .
для любых
и .
для любого .
Определение базиса линейного пространства. Теорема о единственности разложения вектора по данному базису.
Базис
- любая упорядоченная система
из n линейно
независимых векторов пространства
.
Обозначение:
Для
каждого вектора
существуют
числа
такие
что
Числа
называются
координатами вектора
в
базисе (
)
(определяются однозначно), X
= (x) -
координатный столбец вектора
в
этом базисе. Употребляется запись:
Теорема. (О разложении вектора по базису.)
Любой вектор векторного пространства можно разложить по его базису и притом единственным способом.
Доказательство.
1) Пусть L произвольная прямая (или ось)
и
–базис
.
Возьмем произвольный вектор
.
Так как оба вектора
и
коллинеарные
одной и той же прямой L,
то
.
Воспользуемся теоремой о
коллинеарности двух векторов.
Так как
,
то найдется (существует) такое число
,
что
и
тем самым мы получили разложение
вектора
по
базису
векторного пространства
Координаты вектора линейного пространства в данном базисе. Способ определения линейно зависимости векторов линейного пространства.
. Пусть e1,e2,…,en – базис пространства V, x,y – произвольные элементы пространства V. При сложении элементов их координаты складываются, при умножении произвольного элемента х на любое число l все координаты этого элемента умножаются на l.
[Док-во]: x=a1e1+a2e2+…+anen=i=1ånaiei=(e1,e2,…,en)(a1,a2,…,an).
y=b1e1+b2e2+…+bnen=i=1ånbiei=(e1,e2,…,en)(b1,b2,…,bn).
1) x+y= i=1ånaiei+i=1ånbiei=i=1ån(aI+bI)ei=(e1,e2,…,en)(a1+b1,…,an+bn)= (a1+b1)e1+…+(an+bn)en;
2) lx=l* i=1ånaiei= i=1ånlaiei=(e1,e2,…,en)(la1,…,lan)= (la1)e1+…+(lan)en
[Лемма]: Пусть e1,e2,…,en базис в пространстве V, f1, f2,…, fn – элементы пространства V. Векторы f1, f2,…, fn линейно зависимы в том и только том случае, когда линейно зависимы столбы их координат.
[Док-во]: f1= (e1,e2,…,en)(a1,a2,…,an)
l1f1+l2f2+…+lnfn=(e1,e2,…,en)[l1(a11,a12,…,a1n)+…+ln(an1,an2,…,ann)] => вектора f1,f2,…,fnлинейно зависимы в том и только том случае, когда l1(a11,a12,…,a1n)+…+ln(an1,an2,…,ann) = (0,0,…,0) а это значит, что столбцы их координат должны быть линейно зависимыми.
Система векторов e1,e2, ..., ek линейного пространства L называется линейно независимой системой, если равенство С1·e1+С2·e2+ ...+Сk· ek = 0 возможно только когда все коэффициенты С1, С2, ..., Сk равны нулю.
Здесь 0 — нулевой вектор линейного пространства L, С1, С2, ..., Сk — числовые коэффициенты.
Если система векторов e1,e2, ..., ek линейного пространства L не является линейно независимой системой, то она называется линейно зависимой системой векторов.
Связь между базисами линейного пространства. Матрица перехода (теорема о невырожденной матрицы перехода)