
- •Понятие информации и ее виды; подходы к оценке количества информации. Аналоговая и дискретная форма представления информации. Единицы дискретной информации.
- •Понятие алгоритма. Операция. Программа. Команда. Укрупненная структура и принцип функционирования эвм.
- •Способы представления дискретной информации. Позиционные и непозиционные системы счисления.
- •Системы счисления, используемые в эвм - двоичная, восьмиричная, шестнадцатиричная и двоично-десятичные системы счисления.
- •Перевод чисел из одной позиционной системы счисления в другую. Диапазон представления чисел со знаком и без знака. Точность представления числа.
- •Прямой, обратный и дополнительный коды. Выполнение операций двоичной арифметики в прямом, обратном и дополнительных кодах.
- •Представление чисел с фиксированной точкой и с плавающей запятой. Символьные данные.
- •Булевы функции одной и нескольких переменных. Функционально полные системы булевых функций. Логические операции и элементы для их выполнения.
- •Нормальные формы логических функций. Минимизация булевых функций.
- •Логические элементы и комбинационные схемы. Сложность комбинационных схем по Квайну.
- •Выполнение арифметических операций на основе функционально-полной системы логических функций. Комбинационные сумматоры и алу.
- •Последовательностные схемы (цифровые автоматы). Запоминающие элементы - триггеры.
- •Основные типы операционных элементов эвм. Шины. Организация передач между операционными элементами.
- •Сдвигающие регистры. Регистровые файлы.
- •Счетчики. Дешифраторы.
- •Основные характеристики компьютеров.
- •Быстродействие и производительность компьютеров.
- •Структура процессора простейшей базовой эвм. Назначение основных функцинальных устройств и элементов процессора.
- •Структура операционного автомата базовой эвм.
- •Выполнение команд в базовой эвм (на примере арифметической команды).
- •Выполнение команд в базовой эвм (на примере команд условного перехода).
- •Выполнение команд в эвм (на примере базовой эвм).
- •Понятие архитектуры и организации эвм. Основные элементы архитектуры.
- •Принцип программного управления.
- •Каноническая структура компьютера. Принстонская и гарвардская архитектура эвм.
- •Достоинства и недостатки неймановской архитектуры эвм.
- •Организация системы памяти. Внутренняя память процессора,
- •Организация ввода-вывода данных.
- •Структура компьютера с программно-управляемым интерфейсом.
- •Структура компьютера с общей шиной
- •Структура компьютера с каналами ввода-вывода.
- •Понятие системного интерфейса. Контроллеры внешних устройств. Параллельная и последовательная передача данных.
- •Способы адресации, используемые в эвм.
- •Способы адресации с модификацией адреса.
- •Стековая адресация. Выполнение вычислений в стековых эвм (на примере).
- •Система команд компьютера. Основные виды команд.
- •Понятие cisc и risc-архитектуры
- •Характерные особенности risc-процессоров
- •Однопрограммный режим работы компьютера.
- •Мультипрограммный режим работы компьютера.
- •Средства мультипрограммирования.
- •Функции управляющих программ операционной системы.
- •Привилегированные операции и состояния процессора.
- •Организация прерывания программ. Источники прерываний.
- •Основные сведения об организации ввода/вывода информации. Программно-управляемая передача данных и режим прямого доступа к памяти.
- •Организация синхронного обмена.
- •Организация асинхронного обмена.
- •Организация обмена по прерыванию.
- •Организация системы прерываний. Вектор прерывания. Понятие глубины прерывания. Уровни прерывания.
- •Понятие приоритета прерываний. Абсолютный и относительный приоритет. Организация обработки запросов на прерывание.
- •Программирование приоритетов по маске и по порогу.
- •Организация обмена в режиме прямого доступа к памяти. Функции контроллера пдп.
- •Принцип микропрограммного управления. Операционный и управляющий автоматы, их взаимодействие.
- •Микрооперация. Микрокоманда. Виды микрокоманд .Микропрограмма.
- •Горизонтальное кодирование микрокоманд.
- •Вертикальное кодирование микрокоманд.
- •Смешанное кодирование микрокоманд.
- •Управляющий автомат с хранимой микропрограммой.
- •Управляющий автомат с жесткой логикой.
- •Каноническая структура процессора.
- •Цикл выполнения машинных команд и его фазы.
- •Синхронный конвейер команд. Оценка его производительности.
- •Причины снижения производительности при конвейерном режиме обработки команд.
- •Способы повышения производительности при конвейерной обработке команд.
- •Структура процессора i8086. Организация конвейера команд. Регистровый файл процессора.
- •Особенности организации процессора i80286. Конвейер команд. Организация защиты памяти на аппаратном уровне.
- •Особенности организации конвейера команд в процессорах Pentium. Структура процессора. Понятие суперскалярной архитектуры.
Структура процессора простейшей базовой эвм. Назначение основных функцинальных устройств и элементов процессора.
Процессор - состоит из ряда регистров, арифметическо-логического устройства и устройства управления.
Счетчик команд (СК) служит для организации обращений к ячейкам памяти, в которых хранятся команды программы. После исполнения любой команды СК указывает адрес ячейки памяти, содержащей следующую команду программы. Так как команды могут размещаться в любой из 2048 = 211 ячеек памяти, то СК имеет 11 разрядов.
Регистр адреса (РА) 11-разрядный регистр, содержащий значение исполнительного адреса (адреса ячейки памяти, к которой обращается ЭВМ за командой или данными).
Регистр команд (РК). Этот 16-разрядный регистр используется для хранения кода команды, непосредственно выполняемой машиной.
Регистр данных (РД). Используется для временного хранения 16-рязрядных слов при обмене информацией между памятью и процессором.
Аккумулятор (А). 16-разрядный регистр, являющийся одним из главных элементов процессора. Машина может одновременно выполнять арифметические и логические операции только с одним или двумя операндами. Один из операндов находится в аккумуляторе, а второй (если их два) - в регистре данных. Результат помещается в А.
Регистр переноса (С) - это одноразрядный регистр, выступающий в качестве продолжения аккумулятора и заполняющийся при переполнении А. Этот регистр используется при выполнении сдвигов.
Арифметическо-логическое устройство (АЛУ) может выполнять такие арифметические операции, как сложение и сложение с учетом переноса, полученного в результате выполнения предыдущей операции. Кроме того, оно способно выполнять операции логического умножения, инвертирования, циклического сдвига.
Структура операционного автомата базовой эвм.
Операционный автомат базовой ЭВМ – устройство служащее для хранения слов данных, выполнения набора микроопераций и вычисления значений логических условий, т.е. операционный автомат является структурой, организованной для выполнения действий над данными. Он состоит из операционных элементов, под которыми понимаются комбинационные схемы с памятью, которые(схемы) реализуют одну из следующих функций:
Хранение некоторого слова
Выполнение вычисления слова
Вычисление логических условий, зависящих от этого слова
Выполнение команд в базовой эвм (на примере арифметической команды).
Выполнение команд в базовой эвм (на примере команд условного перехода).
Почти все программы ЭВМ должны обладать способностью
проверять исходные данные, промежуточные и окончательные результаты
вычислений, чтобы на основании результатов проверки изменять нужным
образом последовательность выполнения операций. Например, следует
должным образом отреагировать на ситуацию, когда при сложении
положительных чисел возникает отрицательный результат
Команды условного переходов не изменяют состояния аккумулятора и регистра переноса. Они могут лишь изменить содержимое счетчика команд, поместив в него адрес, определяемый адресной частью команды.
BCS M (Переход, если перенос). Переход к команде, расположенной в ячейке с адресом M, если содержимое регистра переноса равно 1.
BPL M (Переход, если плюс). Переход к команде, расположенной в ячейке с адресом M, если содержимое аккумулятора больше или равно нулю, т.е. в его старшем разряде (знаковом разряде) содержится 0.
BMI M (Переход, если минус). Переход к команде, расположенной в ячейке с адресом M, если содержимое аккумулятора меньше нуля, т.е. в его старшем (знаковом) разряде содержится 1.
BEQ M (Переход, если нуль). Переход к команде, расположенной в ячейке с адресом M, если содержимое аккумулятора равно нулю.