Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
реферат.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
199.27 Кб
Скачать

Введение.

  Понимание особенностей взаимодействия волн ММ диапазона с молекулами атмосферных газов, с гидрометеорами, с турбулентными неоднородностями воздуха, а также оценка влияния на характеристики принимаемых сигналов вертикальной стратификации атмосферы и отражений от подстилающей поверхности являются весьма важными во многих практических приложениях. В работе приведены результаты теоретических и экспериментальных исследований, выполненных в ИРЭ РАН в последние годы по этим направлениям .

Проблема описания микроволнового поглощения в газах интересует радиофизиков как в России, так и за рубежом более полувека. Однако, несмотря на значительные усилия специалистов по теоретическому описанию спектров полярных газов, до сих пор не удавалось создать теорию, адекватную измеряемым величинам поглощения. Из-за сложности способов учета межмолекулярных взаимодействий до сих пор еще не получены аналитические выражения для спектров поглощения воздуха в широком диапазоне частот, а также давлений и температур.

В ИРЭ РАН был предложен и развит новый подход к описанию молекулярного поглощения. Оказалось, что результаты теоретических расчетов на основе метода функций памяти и моделей обобщенной вращательной диффузии хорошо согласуются с экспериментом без привлечения других гипотез (например, димерного механизма поглощения). Этот подход позволил лучше понять механизм взаимодействия электромагнитных волн с молекулами паров воды и кислорода .

         В окнах прозрачности атмосферы на приземных линиях связи миллиметровые волны (ММВ) наибольшее ослабление испытывают в осадках. Вызвано это двумя причинами: во-первых, тем, что характерные размеры капель того же порядка, что и длина волны излучения, из-за чего дифракционное рассеяние каплями носит резонансный характер; во-вторых, тем, что большие значения мнимой части комплексного показателя преломления воды, обусловливают высокий уровень поглощения энергии волны в объеме капли. Следует отметить, что весьма основательно экспериментально и теоретически изучено ослабление радиоволн в осадках, установлены его спектральные и температурные зависимости, а также статистические характеристики; заметно хуже исследовано рассеяние радиоволн в осадках.

Влияние рассеяния ММВ в осадках на работу приземных линий связи может быть крайне неблагоприятным, так как оно приводит к ухудшению условий электромагнитной совместимости линий связи между собой и с другими радиоэлектронными системами, уменьшает скрытность передачи информации, создает электромагнитные помехи различным службам, нарушает экологию окружающей среды.

            Вертикальная неоднородность атмосферы может приводить к искривлению траекторий распространения (рефракции), к смещению центра пучка, и

соответствующему изменению уровня сигнала, к многолучевому и волноводному распространениям или даже к отсутствию связи между пунктами. Для определения рефракции в сферически-слоистой атмосфере был разработан алгоритм, позволяющий при любых вертикальных профилях коэффициента преломления находить траектории радиоволн по координатам источника и приемника. С помощью этого алгоритма по метеопараметрам, измеренным Институтом экспериментальной метеорологии (ИЭМ) на высотах от 0 до 300 м в течение года, исследована статистика траекторных параметров на различных трассах приземного слоя атмосферы (ПСА).

Из-за влияния подстилающей поверхности ПСА чрезвычайно изменчив в пространстве и времени и является самым сложным для изучения слоем атмосферы. До сих пор для поля показателя преломления в ПСА не существует достаточно надежной и универсальной математической модели, позволяющей в любых ситуациях рассчитывать параметры, распространяющихся в нем ММВ. Вариации амплитуды и угла прихода миллиметровых волн ( =3,3 мм), обусловленные турбулентностью и стратификацией приземного слоя атмосферы, экспериментально исследовались на трассе длиной 14 км совместно с МГТУ им. Баумана. В течение двух лет изучались статистические характеристики вертикальной и горизонтальной составляющих угла прихода и их временные спектры в диапазоне  10-5 –10 Гц.

При функционировании атмосферных радиоканалов систем передачи информации при небольших ( 10 - 15 м) высотах корреспондирующих пунктов (малые углы скольжения) на вход приемной антенны из-за многолучевости могут поступать как прямые, так и отраженные подстилающей поверхностью сигналы, что вызывает различные интерференционные эффекты и приводит к существенным ограничениям ширины полосы.

1. Молекулярное поглощение.

При вычислении молекулярных спектров поглощения газовых компонент атмосферы в силу сложности теории приходится использовать многочисленные аппроксимации, влияющие на точность конечного результата или приводящие к асимптотическим зависимостям для отдельных областей спектра, отдельных линий и даже частей линий (крыла, периферии, центра). Существенным моментом в теоретическом анализе частотных зависимостей спектров поглощения полярных газов является вопрос о расхождении экспериментальных данных с результатами теоретических расчетов (например, в случае кислорода при больших давлениях, водяного пара), основанных на трактовках соударений, известных как приближения Лорентца, Ван Флека-Вейскопфа, Гросса и некоторых других. В этих трактовках столкновительного уширения решение задачи об определении поглощения сводится к рассмотрению двухуровневой системы, обуславливающей отдельные спектральные линии. В результате спектр поглощения представляет собой совокупность вкладов от изолированных переходов. Для объяснения указанных расхождений теории с экспериментом вводят предположения о характере межмолекулярных взаимодействий (столкновений), требующие рассмотрения многоуровневых систем, и подчеркивается важность учета возникающих в таких системах эффектов интерференции линий. Выдвигаются также гипотезы о дополнительных механизмах молекулярного поглощения. При этом иногда возникает ряд противоречий в качественной трактовке расхождений теории с экспериментом.

 

 

Рис.1. Отнесенный к давлению тангенс потерь   молекулярного кислорода как функция давления P на частоте =0,3023 см-1, рассчитанный для моделей J-диффузии (сплошная линия) и Ван Флека-Вайскопфа (штриховая линия); квадратики - экспериментальные данные.

 

2. Особенности распространения миллиметровых волн в дожде

 

Как известно, максимум ослабления радиоволн в дождях наблюдается в ММ диапазоне волн. Ослабление обусловлено двумя механизмами: поглощением энергии волны в объеме капли дождя и дифракционным рассеянием излучения каплей во внешнее пространство. Вклад в ослабление вносит лишь рассеяние в направлении вперед, которое для очень разреженной среды случайно расположенных капель, каким является дождь, всегда когерентно. Представление о его роли в ослаблении радиоволн в дождях различной интенсивности можно получить с помощью спектральной зависимости альбедо однократного рассеяния  , численно равного отношению коэффициента рассеяния    к коэффициенту ослабления   ,   / , (рис. 4).

 

 

Рис.4. Спектральная зависимость альбедо однократного рассеяния элемента объема дождя   при интенсивностях дождя R, равных 1 – 100 мм/ч, 2 – 12,5 мм/ч, 3 – 1,5 мм/ч.

 

Из рисунка следует, что вклад рассеяния в ослабление радиоволн ММ и СМ диапазонов существенно различается. Так ослабление ММВ на 50% определяется рассеянием излучения, причем, как показывают расчеты, для этой части диапазона волн   практически не зависит от длины волны, интенсивности дождя, распределения капель по размерам и термодинамической температуры воды в каплях. В диапазоне СМ волн   является убывающей степенной функцией длины волны излучения, зависит, также, от интенсивности дождя, распределения капель по размерам и термодинамической температуры капель .

         В обзорах подробно рассмотрены особенности распространения. Причинами появления поляризованного излучения ММВ в дожде являются: несферичность падающих капель дождя и наличие направления предпочтительной ориентации осей симметрии таких капель. Это находит выражение в спектральных зависимостях комплексных волновых чисел волн разных поляризаций.

         Важнейшим свойством рассеяния ММВ в направлениях, отличных от направления вперед, является то, что для случайно распределенных в пространстве капель дождя его можно считать независимым. Это следует из того, что капли достаточно далеко удалены друг от друга (находятся в дальней волновой зоне по отношению друг к другу) и, таким образом, каждая капля взаимодействует с электромагнитной волной так, как если бы других капель не существовало. Это обстоятельство позволяет полагать, что рассеянное совокупностью различных капель излучение является некогерентным.

 

 

Рис.5. Нормированные индикатрисы рассеяния элемента объема дождя:

1 -  = 1,4 мм; R = 12,5 мм/ч,

2 -   = 1,4 мм; R=1,56 мм/ч,

3 -  = 2,2 мм; R=12,5 мм/ч,

4 -  = 2,2 мм; R=1,56 мм/ч,

5 -  = 3,3 мм; R=12,5 мм/ч,

6 -  =3,3 мм; R=1,56 мм/ч,

7 -  = 8,6 мм; R= 12,5 мм/ч,

8 -  =8,6 мм ; R=1,56 мм/ч.

 

Угловое распределение рассеянного элементом объема дождя неполяризованного излучения характеризуют нормированной индикатрисой рассеяния. Нарис.5 представлены индикатрисы рассеяния радиоволн длиной  = 1,4; 2,2; 3,3 и 8,6 мм в дождях с интенсивностями R = 1,56 и 12,5 мм/ч. Расчеты выполнены по теории Ми для распределения капель по размерам в соответствии с законом Лоуса-Парсонса . Несмотря на то, что форма индикатрисы рассеяния излучения отдельной частицей многолепестковая (число лепестков ~   где   - модуль комлексного показателя преломления вещества частицы, а  ,  здесь   - длина волны излучения в свободном пространстве,   - радиус частицы), форма индикатрисы рассеяния полидисперсной среды (каковой является дождь) весьма сглажена, но эффект Ми хорошо выражен в диапазоне ММВ в отличие от диапазона СМ волн, где индикатриса рассеяния близка к релеевской.

Эффект Ми состоит в том, что:

-главный лепесток значительно вытянут в направлении распространения волны;

-степень вытянутости индикатрисы зависит от длины волны излучения (растет с уменьшением длины волны), интенсивности дождя (более вытянут у дождей с большей интенсивностью) и формы функции распределения капель по размерам.

Из рис.5 видно, что индикатриса рассеяния элемента объема дождя на длине волны   = 8,6 мм близка по форме к релеевской, а с уменьшением длины волны передний лепесток вытягивается, причем анизотропия рассеяния тем больше, чем больше интенсивность дождя. Последнее обстоятельство связано с тем, что с ростом интенсивности дождя растут число и размеры крупных капель. Знание индикатрис полезно на практике, для оценки уровня возможных помех между радиосистемами при рассеянии радиоволн в дождях, и в теоретических исследованиях переноса радиотеплового СВЧ излучения в осадках.

         Индикатрисы рассеяния ММВ в дожде можно, с хорошей для практических применений точностью, аппроксимировать однопараметрическим соотношением, представляющим собой произведение индикатрис  Релея  и Хеньи-Гринстейна. Большей точности аппроксимации удалось достичь с помощью двухпараметрического выражения.

Упомянутое выше предположение о независимом рассеянии СВЧ излучения отдельными каплями в дождях позволяет существенно упростить оценку эффектов некогерентного многократного рассеяния, используя для этого хорошо развитую феноменологическую теорию переноса излучения. Так на базе численного решения векторной задачи переноса СВЧ излучения в дожде проанализировано влияние многократного рассеяния излучения на уровень взаимных помех между спутниковыми и приземными линиями связи. В диапазоне ММВ важно учитывать вклады рассеяний высоких кратностей даже в дождях небольшой интенсивности и облаках.