Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Вопросы по физике.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
866.43 Кб
Скачать

1-2

Основные положения зонной теории:

  1. При сближении атомов, разрешенные дискретные энергоуровни расщепляются в разрешенные энергозоны

  2. Сильнее всего расщепляются внешние энергоуровни, поскольку они ближе всего к соседним атомам

  3. Каждая разрешенная энергозона состоит из множества разрешенных энергоподуровней, число которых равно числу атомов в кристалле.

  4. Расстояние между разрешенными подуровнями в разрешенной зоне настолько мало, что для перемещения электронов между подуровнями достаточно тепловой энергии электронов ( если есть свободное место)

  5. Разрешенные энергозоны разделены между собой запрещенными энергозонами

  6. В электропроводности учавствуют 3 внешние эноргозоны:

  1. Зона в которой находятся валентные зоны

  2. Следующая за ней разрешенная зона, свободная от электронов

  3. Находящаяся между ними запрещенная зона

3

Как мы знаем из модели атома Бора, электроны в атоме расположены на различных орбитальных уровнях, характеризующихся различной удаленностью от ядра и, соответственно, различной энергией связи электрона с ядром. При образовании кристаллической решетки твердого тела орбиты электронов несколько деформируются, и, соответственно, смещаются энергетические уровни удержания электронов на них. Это смещение можно представить себе двояко. С одной стороны, можно заметить, что в твердом теле электрон не может не подвергаться электрическому воздействию со стороны соседних атомов — он притягивается к их ядрам и отталкивается их электронами. С другой стороны, два электрона, в силу принципа запрета Паули, не могут находиться на одной орбите в одном и том же энергетическом состоянии, то есть два любых электрона в любом случае находятся на несколько отличающихся друг от друга энергетических уровнях. Многозонную теорию строения твердого тела можно использовать для объяснения электропроводности вещества. Если валентная зона твердого тела заполнена, а до следующей незаполненной энергетической зоны далеко, вероятность того, что электрон на нее перейдет, близка к нулю. Значит, электроны прочно привязаны к атомам и практически не образуют проводящего слоя. Соответственно, и под воздействием электрической разности потенциалов с места они не двигаются, и мы имеем изолятор — вещество, не проводящее электрический ток. Проводник, с другой стороны, как раз представляет собой вещество с частично заполненной зоной валентных электронов, внутри которой электроны имеют значительную свободу перемещения от атома к атому. Наконец, полупроводники — это кристаллические вещества с заполненной валентной зоной, и в этом они подобны изоляторам, однако разность энергий между валентным уровнем и следующим, проводящим энергетическим уровнем у них настолько незначительна, что электроны преодолевают ее при обычных температурах чисто в силу теплового движения.

4

Запрещённая зона — область значений энергии, которыми не может обладать электрон в идеальном (бездефектном) кристалле. В полупроводниках запрещённой зоной называют область энергий, отделяющую полностью заполненную электронами валентную зону (при Т=0 К) от незаполненной зоны проводимости. В этом случае шириной запрещённой зоны (см. рисунок) называется разность энергий между дном (нижним уровнем) зоны проводимости и потолком (верхним уровнем) валентной зоны. Характерные значения ширины запрещённой зоны в полупроводниках составляют 0,1—4 эВ. Кристаллы с шириной запрещённой зоны более 4 эВ обычно относят к диэлектрикам.

5

концентрация носителей тока в собственном полупроводнике возрастает с ростом температуры очень быстро (по экспоненциальному закону). Из курса «Электричество» известно, что проводимость где qo – заряд носителей тока, nих концентрация, подвижность носителей тока. Подвижность показывает, насколько изменяется дрейфовая скорость носителей тока при изменении напряженности электрического поля на единицу ( = υдр/E).

6

Число электронов в зоне проводимости собственного полупроводника равно числу дырок в валентной зоне, т.е. np=ne. Так как электронный и дырочный газы в полупроводнике невырожденные, то, например, для электронов распределение по энергиям можно записать в виде , где f(E) – функция распределения Ферми-Дирака, показывающая вероятность заполнения электроном энергетического уровня с энергией Е. где ЕF – энергия Ферми (электрон может иметь такую энергию с вероятностью 50%); Т - абсолютная температура; k= - постоянная Больцмана. В области больших энергий (т.е. при Е - ЕF >> kT) единицей в знаменателе можно пренебречь. Тогда функция Ферми-Дирака принимает вид: а распределение по энергиям можно записать в виде , где за нулевой уровень энергии принято дно зоны проводимости (рис.3). Аналогично запишется распределение дырок в валентной зоне. Вычисляя nе (1) и Рис.3. Уровень Ферми для чистого полупроводника np и приравнивая их, находим ЕF = (2) Следовательно, уровень Ферми в чистых полупроводниках лежит посередине запрещенной зоны. Т.о. из формул (1) и (2) вытекает, что ne=np~exp( ). Так как проводимость чистого полупроводника (собственная проводимость) состоит из суммы проводимостей электронов и дырок, а каждая из них пропорциональна nе, то получим Значит, соб-ственная проводимость полупроводника экспоненциально растет с ростом температуры. Так как связана с удельным сопротивлением соотношением , то для сопротивления собственного полупроводника имеем (3) Прологарифмировав выражение (3), получим lnR – lnR0 = или lnRо= Если построить график зависимости lnR=f(1/T), то получим прямую линию. По тангенсу угла наклона этой прямой можно определить ширину запрещенной зоны собственного полупроводника: (4) где k= - постоянная Больцмана.

7

Для дырочного полупроводника удельная электропроводность дырок

 

                                   ,                                            (4.13)

 

где p - концентрация дырок.

         В общем  случае  удельная  электропроводность  определяется как электронами, так и дырками:

 

                                   .                                 (4.14)

 

Электронная составляющая проводимости определяется первым слагаемым в формуле (4.14),  второе слагаемое связано с дырочной проводимостью полупроводника.

         Величина удельной  проводимости полупроводника и ее температурная зависимость зависят от концентраций носителей  (электронов  и дырок) и их подвижностей, которые в свою очередь определяются типом полупроводника. В собственном  полупроводнике  концентрации  электронов и дырок одинаковы (n = p = ni = pi, где ni и pi - собственные концентрации носителей). Тогда удельная электропроводность c собственного полупроводника будет равна

 

                                       .                                        (4.15)

 

Электропроводность собственного полупроводника  называют  собственной электропроводимостью и обозначают обычно  с.

 

                                      .                                     (4.16)

 

Первое слагаемое в этом выражении слабо зависит от температуры, поэтому график зависимости  от 1/T представляет собой прямую линию (рис. 4.4).

Рис. 4.4. Температурная зависимость концентрации носителей заряда в собственном полупроводнике

         Таким образом,  концентрация носителей заряда в собственных полупроводниках зависит от ширины запрещенной зоны Eg и температуры Т. Для  германия,  например,  Eg = 0,72 эВ (при T = 300 K) и концентрация собственных носителей заряда при комнатной температуре составляет приблизительно 2,51019 м-3.  Для  кремния соответственно Eg = 1,1 эВ и ni = 1,5 1016 м-3.

8

Электропроводность примесного  полупроводника  называется примесной. Примеси могут весьма существенно влиять на  электрические свойства полупроводников. Например,  добавление в кремний бора в количестве одного атома на 105 атомов кремния увеличивает проводимость при  комнатной  температуре  в 1000 раз.  Небольшая добавка примеси к полупроводнику называется легированием.

         Удельная электропроводность примесных полупроводников так же, как и для собственных полупроводников, определяется  концентрацией носителей заряда  в зоне проводимости и их подвижностью. Для донорного полупроводника при низких температурах основным поставщиком электронов  в зону проводимости являются донорные уровни примеси. За счет термического возбуждения электроны с донорных  уровней  примесных атомов переходят в зону проводимости.

         Концентрацию электронов проводимости в донорном полупроводнике при низких температурах можно определить, подставив выражение для уровня Ферми донорного полупроводника (см. формулу (3.27)) в соотношение (3.17), определяющее концентрацию электронов в зоне проводимости в зависимости от энергии Ферми. В результате вычислений придем к следующему выражению:

                                     

                                 .                                 (4.19)

 

Прологарифмировав это выражение, получим

 

                                                                     (4.20)

 

Так же, как и в случае собственных полупроводников, функция ln n от 1/T в области низких температур представляет собой прямую, однако тангенс угла наклона будет теперь определяться не шириной запрещенной зоны, а энергией активации донорных примесей Ed.

         При дальнейшем повышении температуры концентрация электронов в зоне проводимости становится сравнимой с концентрацией примеси Nd. Дальнейшее увеличение концентрации электронов в зоне проводимости за счет перехода в нее электронов с донорных уровней примеси становится невозможным. Это явление называют истощением примеси, а температура, при которой наступает истощение примеси, называется температурой истощения примеси и обозначается обычно Ts.  Температуру Ts  можно получить из равенства n = Nd, в результате

 

                                .                                              (4.21)

 

         При очень высоких  температурах  поведение  донорного полупроводника аналогично поведению собственного  полупроводника,  когда  приток электронов в  зону проводимости происходит за счет их перехода из валентной зоны, т.е. проводимость примесного полупроводника становится собственной (см. уравнение (4.16)). Температура перехода к собственной проводимости Ti определяется из условия равенства концентраций носителей в собственном полупроводнике и электронов в донорном полупроводнике:

 

.

Отсюда

                                .                                               (4.22)

        

Температурная зависимость  концентрации  электронов проводимости в  донорном  полупроводнике  представлена  схематически  на рис. 4.6. Участок а - б соответствует температурной области примесной проводимости. Тангенс угла наклона    определяется энергией активации донорных уровней . В области  б - в концентрация носителей заряда в зоне проводимости остается постоянной, т.к. примесные  уровни истощены, а энергии теплового возбуждения  еще  недостаточно  для  перехода электронов из валентной зоны в зону проводимости. Электроны могут преодолеть запрещенную зону начиная с температуры Ti (участок в - г). При этом (рис. 4.6).

Рис. 4.6. Температурная зависимость концентрации электронов в донорном полупроводнике

         Можно показать, что для температурной зависимости концентрации дырок в акцепторном полупроводнике справедливы  аналогичные  результаты.  В частности, концентрация дырок в валентной зоне

 

                                   ,                                  (4.23)

 

где Na - концентрация акцепторных уровней;  Ea - энергия активации акцепторных уровней.

         Как подчеркивалось выше, для невырожденного и вырожденного газа носителей в полупроводниках любого типа температурная зависимость подвижностей электронов и дырок значительно слабее, чем температурная зависимость их концентраций. По этой причине температурная зависимость  удельной  электропроводности примесного полупроводника на участках примесной и собственной проводимости, где концентрация свободных носителей заряда экспоненциально зависит от температуры, в основном определяется зависимостью от температуры концентрации носителей заряда. На этих участках вид зависимости ln от 1/T не изменяется по сравнению с зависимостью lnn от 1/T. Практически не изменяются и угловые коэффициенты соответствующих зависимостей, определяемые энергиями активации примесных уровней и валентной зоны соответственно для примесной и собственной проводимости.

Подвижность носителей существенное влияние оказывает на температурную зависимость электропроводности примесного полупроводника  в  области  истощения примеси (участок б - в, рис. 4.6). В слаболегированных  полупроводниках  в  области  истощения примеси электропроводность даже уменьшается с ростом температуры, так как уменьшается подвижность носителей за счет механизма  рассеяния их на фононах.

Рис. 4.7. Схематические зависимости логарифма удельной электропроводности от обратной температуры примесных полупроводников с разной степенью легирования

Температурная зависимость логарифма удельной электропроводности от обратной температуры в зависимости от степени легирования схематически показана на рис. 4.7. Кривые 1, 2, 3 последовательно представляют зависимости  по мере увеличения степени легирования полупроводника. Для сильно легированного полупроводника (кривая 3 на рис. 4.7), в котором электронный газ является вырожденным, концентрация основных носителей вплоть до температуры перехода к собственной проводимости Ti3 слабо  зависит от температуры. Подвижность вырожденного газа носителей тоже не зависит от температуры, поэтому ln до температуры, близкой к Ti3, практически не зависит от температуры.

9

Эффе́кт Хо́лла — явление возникновения поперечной разности потенциалов (называемой также холловским напряжением) при помещении проводника с постоянным током в магнитное поле. Открыт Эдвином Холлом в 1879 году в тонких пластинках золота. Эффект Холла - один из важнейших в группе гальваномагнитных явлений. Суть эффекта состоит в следующем: при протекании активного электрического тока через образец, к которому приложено магнитное поле, напрвленное перпендикулярно току (или имеющее такую составляющую), в образце возникает электрическое поле (ЭДС Холла), направленное перпендикулярно и току, и магнитному полю. Величина ЭДС Холла пропорциональна произведению тока и напряженности магнитного поля и зависит от свойств вещества, обычно учитываемых так называемой "постоянной Холла". Знак ЭДС Холла связан со знаком носителей тока в образце: величина постоянной Холла, которая может быть определена из оптыа, связана с концентрацией (числом носителей заряда в единице объема) и подвижностью носителей тока. Таким образом, эффект Холла может быть применен для определения этих параметров (знака, концентрации и подвижности носителей тока), что особенно важно в теории и практике применения полупроводниковых материалов. Очевидно, знание этих параметров для какого-либо обрзца позвроляет применить его в качестве датчика величины магнитного поля; кроме того, эффект Холла при некторых условиях применим для определения плотности тока в образце. Эффект Холла, в некоторых случаях, позволяет определить тип носителей заряда (электронный или дырочный) в металле или полупроводнике, что делает его достаточно хорошим методом исследования свойств полупроводников. На основе эффекта Холла работают датчики Холла: приборы, измеряющие напряжённость магнитного поля. Датчики Холла получили очень большое распространение в бесколлекторных, или вентильных, электродвигателях (сервомоторах). Датчики закрепляются непосредственно на статоре двигателя и выступают в роли ДПР (датчика положения ротора). ДПР реализует обратную связь по положению ротора, выполняет ту же функцию, что и коллектор в коллекторном ДПТ. Также на основе эффекта Холла работают некоторые виды ионных реактивных двигателей.

10

P-n переход образуется на металлургической границе раздела проводников p и n типа. Понятие металлургической границы означает, что кристаллическая решетка вещества не должна разрушаться. В следствие градиента концентрации, дырки p-области диффундируют в n-область, а электроны из n-области в p-область. При уходе дырок на границе разделов образуется отрицательный заряд, а при уходе электронов образуется положительный заряд. Заряды создают двойной электрический слой, который создает электрическое поле из p-области в n-область и выбрасывающие продиффундированные заряды обратно. Создается динамическое равновесие.

11

Если приложить внешнее напряжение так, чтобы созданное им электрическое поле было направленным противоположно направлению электрического поля между областями пространственного заряда, то динамическое равновесие нарушается, и диффузионный ток преобладает над дрейфовым током, быстро нарастая с повышением напряжения. Такое подключение напряжения к p-n-переходу называется прямым смещением.

Если же внешнее напряжение приложено так, чтобы созданное им поле было одного направления с полем между областями пространственного заряда, то это приведет лишь к увеличению областей пространственного заряда, и ток через p-n-переход не идёт. Такое подключение напряжения к p-n-переходу называется обратным смещением.

Вольт-амперная характеристика p-n-перехода – это зависимость тока через p-n-переход от величины приложенного к нему напряжения. Ее рассчитывают исходя из предположения, что электрическое поле вне обедненного слоя отсутствует, т. е. все напряжение приложено к p-n-переходу. Общий ток через p-n-переход определяется суммой четырех слагаемых:

,

(1.15)

где – электронный ток дрейфа;

         – дырочный ток дрейфа;

         – электронный ток диффузии;

        – дырочный ток диффузии;

        – концентрация электронов, инжектированных в p-область;

        – концентрация дырок, инжектированных в n-область.

При этом концентрации неосновных носителей и зависят от концентрации примесей и следующим образом:

, ,

где , – собственные концентрации носителей зарядов (без примеси) электронов и дырок соответственно.

Скорость диффузии носителей заряда можно допустить близкой к их скорости дрейфа в слабом электрическом поле при небольших отклонениях от условий равновесия. В этом случае для условий равновесия выполняются следующие равенства:

, .

Тогда выражение (1.15) можно записать в виде:

(1.16)

Обратный ток можно выразить следующим образом:

,

где – коэффициент диффузии дырок или электронов; – диффузионная длина дырок или электронов. Так как параметры , , , очень сильно зависят от температуры, обратный ток иначе называют тепловым током.

При прямом напряжении внешнего источника экспоненциальный член в выражении (1.16) быстро возрастает, что приводит к быстрому росту прямого тока, который как уже было отмечено, в основном определяется диффузионной составляющей.

При обратном напряжении внешнего источника экспоненциальный член много меньше единицы и ток p-n-перехода практически равен обратному току , определяемому, в основном, дрейфовой составляющей. Вид этой зависимости представлен на рис. 1.19. Первый квадрант соответствует участку прямой ветви вольт-амперной характеристики, а третий квадрант – обратной ветви. При увеличении прямого напряжения ток p-n-перехода в прямом направлении вначале возрастает относительно медленно, а затем начинается участок быстрого нарастания прямого тока, что приводит к дополнительному нагреванию полупроводниковой структуры. Если количество выделяемого при этом тепла будет превышать количество тепла, отводимого от полупроводникового кристалла либо естественным путем, либо с помощью специальных устройств охлаждения, то могут произойти в полупроводниковой структуре необратимые изменения вплоть до разрушения кристаллической решетки. Поэтому прямой ток p-n-перехода необходимо ограничивать на безопасном уровне, исключающем перегрев полупроводниковой структуры. Для этого необходимо использовать ограничительное сопротивление последовательно подключенное с p-n-переходом.

Рис. 1.19. Вольт-амперная характеристика p-n-перехода

При увеличении обратного напряжения, приложенного к p-n-переходу обратный ток изменяется незначительно, так как дрейфовая составляющая тока, являющаяся превалирующей при обратном включении, зависит в основном от температуры кристалла, а увеличение обратного напряжения приводит лишь к увеличению скорости дрейфа неосновных носителей без изменения их количества. Такое положение будет сохраняться до величины обратного напряжения, при котором начинается интенсивный рост обратного тока – так называемый пробой p-n-перехода.

Диоды широко используются для преобразования переменного тока в постоянный (точнее, в однонаправленный пульсирующий). Диодный выпрямитель или диодный мост (То есть 4 диода для однофазной схемы, 6 для трёхфазной полумостовой схемы или 12 для трёхфазной полномостовой схемы, соединённых между собой по схеме) — основной компонент блоков питания практически всех электронных устройств. Диодный трёхфазный выпрямитель по схеме Ларионова А. Н. на трёх параллельных полумостах применяется в автомобильных генераторах, он преобразует переменный трёхфазный ток генератора в постоянный ток бортовой сети автомобиля. Применение генератора переменного тока в сочетании с диодным выпрямителем вместо генератора постоянного тока с щёточно-коллекторным узлом позволило значительно уменьшить размеры автомобильного генератора и повысить его надёжность.

В некоторых выпрямительных устройствах до сих пор применяются селеновые выпрямители. Это вызвано той особенностью данных выпрямителей, что при превышении предельно допустимого тока, происходит выгорание селена (участками), не приводящее (до определенной степени) ни к потере выпрямительных свойств, ни к короткому замыканию — пробою. В высоковольтных выпрямителях применяются селеновые высоковольтные столбы из множества последовательно соединённых селеновых выпрямителей и кремниевые высоковольтные столбы из множества последовательно соединённых кремниевых диодов. Если соединено последовательно и согласно(в одну сторону) несколько диодов, пороговое напряжение, необходимое для отпирания всех диодов, увеличивается. Диоды в сочетании с конденсаторами применяются для выделения низкочастотной модуляции из амплитудно-модулированного радиосигнала или других модулированных сигналов. Диодные детекторы применяются в радиоприёмных устройствах: радиоприёмниках, телевизорах и т.п. Используется квадратичный участок вольт-амперной характеристики диода. Диоды применяются для защиты устройств от неправильной полярности включения, защиты входов схем от перегрузки, защиты ключей от пробоя ЭДС самоиндукции, возникающей при выключении индуктивной нагрузки и т. п.

12

Светодио́д или светоизлучающий диод (СД, СИД, LED англ. Light-emitting diode) — полупроводниковый прибор с электронно-дырочным переходом, создающий оптическое излучение при пропускании через него электрического тока. Излучаемый свет лежит в узком диапазоне спектра. Его спектральные характеристики зависят во многом от химического состава использованных в нём полупроводников. Иными словами, кристалл светодиода излучает конкретный цвет (если речь идёт об СД видимого диапазона), в отличие от лампы, излучающей более широкий спектр и где конкретный цвет отсеивается внешним светофильтром.

В 1907 году Генри Джозеф Раунд впервые открыл и описал электролюминесценцию, обнаруженную им при изучении прохождения тока в паре металл - карбид кремния (карборунд, SiC), и отметил жёлтое, зелёное и оранжевое свечение на катоде.

Эти эксперименты были позже, независимо от Раунда, повторены О. В. Лосевым в 1923 году, который, экспериментируя с выпрямляющим контактом из пары карборунд — стальная проволока, обнаружил в точке контакта двух разнородных материалов слабое свечение — электролюминесценцию полупроводникового перехода (в то время понятия "полупроводниковый переход" ещё не существовало). Это наблюдение было опубликовано, но тогда весомое значение этого наблюдения не было понято и потому не исследовалось в течение многих десятилетий.

Вероятно, первый светодиод, излучающий свет в видимом диапазоне спектра, был изготовлен в 1962 году в Университете Иллинойса группой, которой руководил Ник Холоньяк.

При пропускании электрического тока через p-n переход в прямом направлении, носители заряда — электроны и дырки — рекомбинируют с излучением фотонов (из-за перехода электронов с одного энергетического уровня на другой).

Не все полупроводниковые материалы эффективно испускают свет при рекомбинации. Лучшие излучатели относятся к прямозонным полупроводникам (то есть таким, в которых разрешены прямые оптические переходы зона-зона), типа AIIIBV (например, GaAs или InP) и AIIBVI (например, ZnSe или CdTe). Варьируя состав полупроводников, можно создавать светодиоды для всевозможных длин волн от ультрафиолета (GaN) до среднего инфракрасного диапазона (PbS).

Диоды, сделанные из непрямозонных полупроводников (например, кремния, германия или карбида кремния), свет практически не излучают. Впрочем, в связи с развитием кремниевой технологии, активно ведутся работы по созданию светодиодов на основе кремния. Советский жёлтый светодиод КЛ 101 на основе карбида кремния выпускался ещё в 70-х годах, однако имел очень низкую яркость. В последнее время большие надежды связываются с технологией квантовых точек и фотонных кристаллов.

13

Трудность в изготовлении кремниевых лазеров вызвана наличием запрещенной энергетической зоны с непрямыми переходами. Это приводит к тому, что вероятность безызлучательных переходов становится выше, чем с эмиссией света. Это, в свою очередь,  связано с тем,  что для выполнения излучательной рекомбинации в непрямозонных полупроводниках требуется наличие дополнительной частицы, например, фонона.

14

Гетеропереход – p-n переход с материалом различного типа. Бурное развитие гетеролазеров началось в лаборатории Алферова на GaAlAs

GaAs ∆E=1,5 эВ AlAs ∆E=2,2 эВ

В лазерах на двойном гетеропереходе пороговый ток снижен до 100 А/мм^2 а на гетероструктуре до 10 А/мм^2. Первый лазер на двойной гетероструктуре создан в лаборатории Алферова. Слой GaAs-оптический волновод (используется явление полного внутреннего отражения так как коэффициент преломления GaAs > GaAlAs).

В торцевом полупроводниковом лазере возникает излучение различных частот, т.н. оптические моды.

15

Лазеры с квантовыми ямами и точками

Самым распространенным типом полупроводникового лазера является лазер на двойной гетероструктуре, где активная область представляет собой тонкий слой узкозонного полупроводника между двумя широкозонными. При достаточно малой толщине активной области она начинает вести себя как квантовая яма и квантование энергетического спектра в ней существенно меняет свойства лазеров.

Основное влияние на свойства лазеров оказывает изменение плотности состояний, происходящее под влиянием размерного квантования. Если в массивном полупроводнике в непосредственной близости от края зоны эта величина мала, то в квантово-размерной системе она не убывает вблизи края, оставаясь равной 4πm/πh2. Создание лазеров с квантово-размерной активной областью позволило получить непрерывную генерацию при комнатной температуре и в дальнейшем снизить пороговый ток инжекционного лазера до величин ~ 50 А/см2.

Благодаря иной энергетической зависимости плотности состояний меняется не только величина порогового тока, но и его температурная зависимость. Она становится более слабой, в силу чего непрерывную генерацию удается получить не только при комнатной температуре, но и при температурах на много десятков градусов выше.

Другой важной особенностью лазеров на квантовых ямах является возможность их частотной перестройки. Минимальная энергия излучаемых световых квантов равна h = Eg + E1e + E1h. Она меняется при изменении a (ширина квантовой ямы, и т.п.), т. е. путем изменения ширины квантовой ямы можно осуществлять перестройку частоты генерации, сдвигая ее в коротковолновую сторону по сравнению с лазерами с широкой (классической) активной областью.

В квантовых точках энергетический спектр меняется еще более радикально, чем в квантовых ямах. Плотность состояний имеет δ-образный вид, и в результате отсутствуют состояния, которые не принимают участия в усилении оптического излучения, но содержат электроны. Это уменьшает потери энергии и как следствие уменьшает пороговый ток. Лазеры могут содержать одну или (для увеличения оптического усиления) несколько плоскостей, заполненных квантовыми точками. Согласно теоретическим оценкам, диодные лазеры с активной средой из квантовых точек должны обладать значительно лучшими свойствами по сравнению с лазерами на квантовых ямах, а именно: существенно большим коэффициентом усиления, меньшей пороговой плотностью тока, полной невосприимчивостью к температуре решетки, лучшими динамическими характеристиками и большими возможностями для контроля за энергией кванта излучения.

16

Свойства лазеров:

  1. Узкая направленность

  2. Монохроматичность

  3. Поляризованность

  4. Когерентность

  5. Высокая спектральная плотность энергетической светимости

17

Биполярный транзистор — трёхэлектродный полупроводниковый прибор, один из типов транзистора. Электроды подключены к трём последовательно расположенным слоям полупроводника с чередующимся типом примесной проводимости. По этому способу чередования различают npn и pnp транзисторы (n (negative) — электронный тип примесной проводимости, p (positive) — дырочный). В биполярном транзисторе, в отличие от полевого транзистора, используются заряды одновременно двух типов, носителями которых являются электроны и дырки (от слова «би» — «два»). Схематическое устройство транзистора показано на втором рисунке.

Электрод, подключённый к центральному слою, называют базой, электроды, подключённые к внешним слоям, называют коллектором и эмиттером. На простейшей схеме различия между коллектором и эмиттером не видны. В действительности же главное отличие коллектора — бо́льшая площадь p — n-перехода. Кроме того, для работы транзистора абсолютно необходима малая толщина базы.

Биполярный точечный транзистор был изобретен в 1947 году, в течение последующих лет он зарекомендовал себя как основной элемент для изготовления интегральных микросхем, использующих транзисторно-транзисторную, резисторно-транзисторную и диодно-транзисторную логику.

Первые транзисторы были изготовлены на основе германия. В настоящее время их изготавливают в основном из кремния и арсенида галлия. Последние транзисторы используются в схемах высокочастотных усилителей. Биполярный транзистор состоит из трёх различным образом легированных полупроводниковых зон: эмиттера E, базы B и коллектора C. В зависимости от типа проводимости этих зон различают NPN (эмиттер − n-полупроводник, база − p-полупроводник, коллектор − n-полупроводник) и PNP транзисторы. К каждой из зон подведены проводящие контакты. База расположена между эмиттером и коллектором и изготовлена из слаболегированного полупроводника, обладающего большим сопротивлением. Общая площадь контакта база-эмиттер значительно меньше площади контакта коллектор-база (это делается по двум причинам - большая площадь перехода коллектор-база увеличивает вероятность экстракции неосновных носителей заряда в коллектор и т.к. в рабочем режиме переход коллектор-база обычно включен с обратным смещением, что увеличивает тепловыделение, способствует отводу тепла от коллектора ), поэтому биполярный транзистор общего вида является несимметричным устройством (невозможно путем изменения полярности подключения поменять местами эмиттер и коллектор и получить в результате абсолютно аналогичный исходному биполярный транзистор).

В активном режиме работы транзистор включён так, что его эмиттерный переход смещён в прямом направлении (открыт), а коллекторный переход смещён в обратном направлении (закрыт). Для определённости рассмотрим npn транзистор, все рассуждения повторяются абсолютно аналогично для случая pnp транзистора, с заменой слова «электроны» на «дырки», и наоборот, а также с заменой всех напряжений на противоположные по знаку. В npn транзисторе электроны, основные носители тока в эмиттере, проходят через открытый переход эмиттер-база (инжектируются) в область базы. Часть этих электронов рекомбинирует с основными носителями заряда в базе (дырками). Однако, из-за того что базу делают очень тонкой и сравнительно слабо легированной, большая часть электронов, инжектированных из эмиттера, диффундирует в область коллектора[1]. Сильное электрическое поле обратно смещённого коллекторного перехода захватывает электроны, и проносит их в коллектор. Ток коллектора, таким образом, практически равен току эмиттера, за исключением небольшой потери на рекомбинацию в базе, которая и образует ток базы (Iэ=Iб + Iк). Коэффициент α, связывающий ток эмиттера и ток коллектора (Iк = α Iэ) называется коэффициентом передачи тока эмиттера. Численное значение коэффициента α 0.9 — 0.999. Чем больше коэффициент, тем эффективней транзистор передаёт ток. Этот коэффициент мало зависит от напряжения коллектор-база и база-эмиттер. Поэтому в широком диапазоне рабочих напряжений ток коллектора пропорционален току базы, коэффициент пропорциональности равен β = α / (1 − α) =(10..1000). Таким образом, изменяя малый ток базы, можно управлять значительно большим током коллектора.

Режимы работы биполярного транзистора

Нормальный активный режим

Переход эмиттер-база включен в прямом направлении (открыт), а переход коллектор-база — в обратном (закрыт)

UЭБ>0;UКБ<0 (для транзистора p-n-p типа, для транзистора n-p-n типа условие будет иметь вид UЭБ<0;UКБ>0);

Инверсный активный режим

Эмиттерный переход имеет обратное включение, а коллекторный переход — прямое.

Режим насыщения

Оба p-n перехода смещены в прямом направлении (оба открыты). Если эмиттерный и коллекторный р-n-переходы подключить к внешним источникам в прямом направлении, транзистор будет находиться в режиме насыщения. Диффузионное электрическое поле эмиттерного и коллекторного переходов будет частично ослабляться электрическим полем, создаваемым внешними источниками Uэб и Uкб. В результате уменьшится потенциальный барьер, ограничивавший диффузию основных носителей заряда, и начнется проникновение (инжекция) дырок из эмиттера и коллектора в базу, то есть через эмиттер и коллектор транзистора потекут токи, называемые токами насыщения эмиттера (IЭ.нас) и коллектора (IК.нас).

Режим отсечки

В данном режиме оба p-n перехода прибора смещены в обратном направлении (оба закрыты). Режим отсечки транзистора получается тогда, когда эмиттерный и коллекторный р-n-переходы подключены к внешним источникам в обратном направлении. В этом случае через оба р-n-перехода протекают очень малые обратные токи эмиттера (IЭБО) И коллектора (IКБО). Ток базы равен сумме этих токов и в зависимости от типа транзистора находится в пределах от единиц микроампер — мкА (у кремниевых транзисторов) до единиц миллиампер — мА (у германиевых транзисторов).

Барьерный режим

В данном режиме база транзистора по постоянному току соединена накоротко или через небольшой резистор с его коллектором, а в коллекторную или в эмиттерную цепь транзистора включается резистор, задающий ток через транзистор. В таком включении транзистор представляет из себя своеобразный диод, включенный последовательно с токозадающим резистором. Подобные схемы каскадов отличаются малым количеством комплектующих, хорошей развязкой по высокой частоте, большим рабочим диапазоном температур, нечувствительностью к параметрам транзисторов.

18

Вольт-амперные характеристики биполярного транзистора в активном режиме

Рассмотрим случай, когда на эмиттерный переход биполярного транзистора подано прямое, а на коллекторный – обратное смещение. Для p-n-p биполярного транзистора это Uэ > 0, Uк < 0.

Для нахождения ВАХ в качестве входных параметров выбирают Jэ, Uк; а выходных – Jк, Uэ, из соображений удобства измерения. В (4.5) выразим ( - 1), подставим в Jк и получим:

Следовательно,

. (5.6)

Соотношение (4.6) описывает семейство коллекторных характеристик Iк = f(Uк)с параметром Iэ.

Семейство эмиттерных характеристик Uэ = f(Iэ) с параметром Uк получим из (5.5). Учитывая, что , получаем:

(5.7)

Формулы (5.6) и (5.7) описывают характеристики транзистора, представленные на рис. 5.9.

Рис. 5.9. Вольт-амперные характеристики БТ в активном режиме: семейство коллекторных кривых

Для активного режима, когда Uэ > 0, Uк < 0, |Uк| << 0, выражения (5.6) и (5.7) переходят в

(5.8)

19

Полевой транзистор - это полупроводниковый прибор, усилительные свойства которого обусловлены потоком основных носителей, протекающим через проводящий канал и управляемый электрическим полем. В отличие от биполярных работа полевых транзисторов основана на использовании основных носителей заряда в полупроводнике. По конструктивному исполнению и технологии изготовления полевые транзисторы можно разделить на две группы: полевые транзисторы с управляющим р- п - переходом и полевые транзисторы с изолированным затвором.

Рис.1. Структура полевого транзистора

Полевой транзистор с управляющим р-п- переходом - это полевой транзистор, затвор которого отделен в электрическом отношении от канала р-п - переходом, смещенным в обратном направлении. Электрод , из которого в канал входят носители заряда, называют истоком; электрод, через который из канала уходят носители заряда, - стоком; электрод, служащий для регулирования поперечного сечения канала, - затвором. При подключении к истоку отрицательного (для п-канала), а к стоку положительного напряжения (рис. 1 ) в канале возникает электрический ток, создаваемый движением электронов от истока к стоку, т.е. основными носителями заряда. В этом заключается существенное отличие полевого транзистора от биполярного. Движение носителей заряда вдоль электронно-дырочного перехода (а не через переходы, как в биполярном транзисторе) является второй характерной особенностью полевого транзистора.

Электрическое поле, создаваемое между затвором и каналом, изменяет плотность носителей заряда в канале, т.е. величину протекающего тока. Так как управление происходит через обратно смещенный р-п-переход, сопротивление между управляющим электродом и каналом велико, а потребляемая мощность от источника сигнала в цепи затвора ничтожно мала. Поэтому полевой транзистор может обеспечить усиление электромагнитных колебаний как по мощности, так и по току и напряжению.

Рис. 2. Структура полевого транзистора с изолированным затвором: а - с индуцированным каналом ; б - со встроенным каналом.

Полевой транзистор с изолированным затвором - это полевой транзистор, затвор которого отделен в электрическом отношении от канала слоем диэлектрика. Полевой транзистор с изолированным затвором состоит из пластины полупроводника (подложки) с относительно высоким удельным сопротивлением, в которой созданы две области с противоположным типом электропроводности (рис. 2 ). На эти области нанесены металлические электроды - исток и сток. Поверхность полупроводника между истоком и стоком покрыта тонким слоем диэлектрика (обычно слоем оксида кремния). На слой диэлектрика нанесен металлический электрод - затвор. Получается структура, состоящая из металла, диэлектрика и полупроводника. Поэтому полевые транзисторы с изолированным затвором часто называют МДП- транзисторами или МОП- транзисторами (металл - оксид- полупроводник).

Существуют две разновидности МДП-транзисторов с индуцированным и со встроенным каналами.

В МДП-транзисторах с индуцированным каналом проводящий канал между сильнолегированными областями истока и стока и, следовательно, заметный ток стока появляются только при определенной полярности и при определенном значении напряжения на затворе относительно истока (отрицательного при р-канале и положительного при п-канале). Это напряжение называют пороговым (UЗИ.пор ). Так как появление и рост проводимости индуцированного канала связаны с обогащением его основными носителями заряда, то считают, что канал работает в режиме обогащения.

В МДП - транзисторах со встроенным каналом проводящий канал, изготавливается технологическим путем, образуется при напряжении на затворе равном нулю. Током стока можно управлять, изменяя значение и полярность напряжения между затвором и истоком. При некотором положительном напряжении затвор - исток транзистора с р - каналом или отрицательном напряжении транзистора с n -каналом ток в цепи стока прекращается. Это напряжение называют напряжением отсечки (UЗИ.отс ). МДП - транзистор со встроенным каналом может работать как в режиме обогащения, так и в режиме обеднения канала основными носителями заряда.

20

Вольт-амперные характеристики (вах) мдп-транзистора с индуцированным каналом.

ВАХ полевого транзистора с изолированным затвором похожи на ВАХ полевого транзистора с управляющим PN-переходом. Как видно на графике а), вначале ток Iси растет прямопропорционально росту напряжения Uси. Этот участок называют омическая область (действует закон Ома), или область насыщения (канал транзистора насыщается носителями заряда ). Потом, когда канал расширяется почти до максимума, ток Iси практически не растет. Этот участок называют активная область.

Когда Uси превышает определенное пороговое значение (напряжение пробоя PN-перехода), структура полупроводника разрушается, и транзистор превращается в обычный проводник. Данный процесс не восстановим, и прибор приходит в негодность.

21

Благодаря очень высокому входному сопротивлению, цепь полевых транзисторов расходует крайне мало энергии, так как практически не потребляет входного тока.

Усиление по току у полевых транзисторов намного выше, чем у биполярных.

Значительно выше помехоустойчивость и надежность работы, поскольку из-за отсутствия тока через затвор транзистора, управляющая цепь со стороны затвора изолирована от выходной цепи со стороны стока и истока.

У полевых транзисторов на порядок выше скорость перехода между состояниями проводимости и непроводимости тока. Поэтому они могут работать на более высоких частотах, чем биполярные.

22

Полевые транзисторы бывают двух типов – канальные и с изолированным затвором. Последние и применяются в компьютерах, их мы и рассмотрим.

(здесь и далее серым цветом обозначается окисел кремния SiO2).

Металлический электрод затвора изолирован от канала тонким слоем диэлектрика (двуокисью кремния SiO2). Концентрация примеси в областях стока и истока значительно больше, чем в канале. Основанием для транзистора служит полупроводник p-типа. Исток, сток и затвор имеют металлические выводы, с помощью которых транзистор и подключается к схеме. Такой транзистор также называется МОП-транзистором (металл-окисел-полупроводник).

МОП-транзисторы характеризуются следующими статическими параметрами режима насыщения:

при Uc=const,

где S – крутизна характеристик, Ic – изменение тока стока, Uзи – изменение напряжения на затворе при постоянном напряжении на стоке.

при Uзи=const,

где Ri – внутренне сопротивление, Uc – изменение напряжения на стоке, Ic – изменение тока стока при постоянном напряжении на затворе.

при Iс=const,

где  – коэффициент усиления, показывающий, во сколько раз сильнее влияет на ток стока изменение напряжения на затворе, чем изменение напряжения на стоке.

Uзи отс – обратное напряжение на затворе (напряжение отсечки), при котором токопроводящий канал оказывается перекрытым.

Входное напряжение между затвором и истоком определяется при максимально допустимом напряжении между этими электродами.

На высоких частотах также очень важными являются междуэлектродные емкости: входная, проходная и выходная.

К важнейшим достоинствам полевых транзисторов относятся:

  1. Высокое входное сопротивление (до 1015 Ом).

  2. Малый уровень собственных шумов

  3. Высокая устойчивость против температурных и радиоактивных воздействий

  4. Высокая плотность элементов при использовании в интегральных схемах

  5. Низкая инерционность.