
- •Вопрос 1
- •Классификация липидов
- •Биологические функции липидов
- •Вопрос 2 принципы нормирования липидов в питании
- •Вопрос 3
- •Вопрос 4
- •5. Мицеллообразование
- •4. Синтез тг и фл.
- •Вопрос 5
- •Вопрос 6.
- •9) Химический состав и строение мицелл, механизм всасывания липидов.
- •Механизмы ресинтеза липидов в энтероцитах, значение.
- •4. Моноацилглицероловый путь синтеза тг и фл
- •5. Глицерофосфатный путь синтеза тг и фл
- •13. Обмен хиломикронов, значение (роль апопротеинов, печеночной и сосудистой липопротеинлипаз). Обмен хиломикронов
- •14. Биохимические причины, метаболические нарушения, клинические проявления нарушений обмена хиломикронов.
- •1. Абеталипопротеинемия (синдром Бассена-Корнцвейга)
- •Жировая ткань – белая и бурая: локализация, функции, субклеточный и химический состав, возрастные особенности.
- •Особенности метаболизма и функции бурой жировой ткани.
- •Лептин: химическая природа, регуляция биосинтеза и секреции, механизмы действия, физиологические и метаболические эффекты.
- •Особенности метаболизма белой жировой ткани
- •20.Механизм липолиза в белой жировой ткани: реакции, регуляция, значение
- •23.Подготовительная стадия b-окисления жирных кислот: реакция активации и челночный механизм транспорта жирных кислот через мембрану митохондрий – схема, регуляция.
- •Регуляция скорости β-окисления жк
- •Энергетический баланс окисления насыщенных жк с четным количеством атомов углерода
- •Энергетический баланс окисления ненасыщенных жк с четным количеством атомов углерода
- •Биохимия
- •Окисление глицерина до н2о и со2: схема, энергетический баланс.
- •Окисление тг до н2о и со2: схема, энергетический баланс.
- •Пол: понятие, роль в физиологии и патологии клетки. Перекисное окисление липидов
- •Сро: стадии и факторы инициации, реакции образования активных форм кислорода.
- •Образование активных форм кислорода
- •Аоз: ферментативная, неферментативная, механизмы. Антиоксидантная система
- •1. Ферментативная антиоксидантная система
- •2. Неферментативная антиоксидантная система
- •36. Пальмитилсинтетазный комплекс: структура, субклеточная локализация, функция, регуляция, последовательность реакций одного оборота процесса, энергетический баланс.
- •37. Реакции удлинения – укорочения жирных кислот, субклеточная локализация ферментов.
- •38. Десатурирующие системы жирных кислот: состав, локализация, функции, примеры (образование олеиновой кислоты).
- •39. Взаимосвязь биосинтеза жирных кислот с обменом углеводов и энергетическим обменом.
- •40. Гормональная регуляция биосинтеза жирных кислот и тг – механизмы, значение.
- •41.Реакции биосинтеза тг, тканевые и возрастные особенности, регуляция, значение.(лучше всего написано в красном учебнике стр 392-394,ну это все оттуда полностью)
- •42.Биосинтез холестерина: реакции до мевалоновой кислоты далее, схематично.
- •43.Особенности регуляции в кишечной стенке и других тканях биосинтеза хс; роль гормонов: инсулина, т3,т4, витамина рр.
- •44.Реакции образования и распада эфиров холестерина – роль ахат и гидролазы эхс, особенности тканевого распределения хс и его эфиров, значение.
- •45.Катаболизм хс, тканевые особенности, пути удаления из организма. Лекарственные препараты и пищевые вещества, снижающие содержание хс в крови.
- •Регуляция обмена липидов
- •1. Центральный уровень регуляции липидного обмена
- •3. Клеточный (метаболический) уровень регуляции липидного обмена
- •51. Межорганный уровень регуляции обмена липидов – понятие. Цикл Рендла, механизмы реализации.
- •53. Обмен лпонп, регуляция, значение; роль лпл, апо в-100, е и с2, лпвп
- •Обмен лпнп, регуляция, значение; роль апо в-100, в-клеточных рецепторов, ахат, блэх, лпвп.
- •55. Обмен лпвп, регуляция, значение; роль лхат, апо а и с, других классов лп
- •56.Обмен липидов в энтероцитах
- •4. Моноацилглицероловый путь синтеза тг и фл
- •5. Глицерофосфатный путь синтеза тг и фл
- •Транспорт липидов в организме
- •Нормальные значения холестерина
- •Нормальные значения
- •Обмен хиломикронов
- •Обмен β-липопротеинов
- •Обмен лпвп
- •57.Дислипопротеинемии
- •Абеталипопротеидемия
- •1. Абеталипопротеинемия (синдром Бассена-Корнцвейга)
- •2. Семейная гиперхолестеролемия (гиперлипопротеинемия типа iIа и iIв)
- •Хиломикронемия
- •Гиперхолестеролемия
- •58.Атеросклероз
- •63 Нарушения липидного обмена. Ожирение
- •1. Генетические факторы ожирения
- •2. Психологические факторы в развитии ожирения
- •3. Физическая активность
- •4. Несбалансированное питание, переедание
- •64. Лептин
- •Ожирение: механизмы взаимосвязи с сахарным диабетом и атеросклерозом.
- •Инсулинорезистентность: понятие, биохимические причины и механизмы развития, метаболические нарушения, взаимосвязь с ожирением.
- •Роль кахексина (фно-a) в развитии инсулиновой резистентности и ожирения. Кахексин (фно-)
Механизмы ресинтеза липидов в энтероцитах, значение.
Липиды поступают в энтероциты как из просвета кишечника, так и из тканей. Большая часть липидов, поступивших в энтероцит, подвергается ресинтезу.
1. 1-МГ гидролизуется кишечной липазой до глицерина и жирной кислоты.
2. Короткоцепочечные жирные кислоты, ФЛ (кроме лецитина) и часть глицерина без изменений направляются из энтероцита в кровь.
3. Длинноцепочечные эндогенные и экзогенные жирные кислоты под действием ацил-КоА-синтетазы (тиокиназы) активируются, образуя Ацил~КоА:
RCOOH + HS-КоА + АТФ → Ацил~КоА + АМФ + ФФн
4. Моноацилглицероловый путь синтеза тг и фл
При ресинтезе ТГ Ацил~КоА с участием ацилтрансферазы этерифицирует 2-МГ до ДГ, а затем до ТГ: 2-МГ + Ацил~КоА → 1,2-ДГ + HS-КоА,
1,2-ДГ + Ацил~КоА → ТГ + HS-КоА
При ресинтезе ФЛ на 1,2-ДГ переносится фосфохолин или фосфоэтаноламин с ЦДФ.
1,2-ДГ + ЦДФ-холин → лецитин + ЦМФ
1,2-ДГ + ЦДФ-этаноламин → кефалин + ЦМФ
В клетках слизистой оболочки тонкой кишки синтезируются в основном видоспецифичные ТГ. Однако при поступлении с пищей ТГ с необычными жирными кислотами, например бараньего жира, в адипоцитах появляются ТГ, содержащие кислоты, характерные для бараньего жира (насыщенные разветвлённые жирные кислоты).
5. Глицерофосфатный путь синтеза тг и фл
глицерол + АТФ → глицеро-ф + АДФ Фермент: глицерокиназа
глицеро-ф + Ацил~КоА → лизофосфатид + HS-КоА Фермент: ацилтрансфераза
лизофосфатид + Ацил~КоА → фосфатид + HS-КоА Фермент: ацилтрансфераза
фосфатид + Н2О → 1,2-ДГ + Фн Фермент: фосфатидаза
1,2-ДГ + Ацил~КоА → ТГ + HS-КоА Фермент: ацилтрансфераза
1,2-ДГ + ЦДФ-холин → лецитин + ЦМФ Фермент: холинтрансфераза
1,2-ДГ + ЦДФ-этаноламин → кефалин + ЦМФ
6. При ресинтезе лецитина Ацил~КоА с участием ацилтрансферазы этерифицирует лизолецитин до лецитина: лизолецитин + Ацил~КоА → лецитин + HS-КоА
7. При ресинтез эфиров холестерина Ацил~КоА с участием ацилхолестеролацилтрансферазы (АХАТ) этерифицирует холестерин до эфира холестерина:
Ацил~КоА + ХС → ЭХС + HS-КоА
От активности АХАТ зависит скорость поступления экзогенного холестерола в организм.
Таким образом, продукты расщепления пищевых жиров, образовавшиеся в
полости кишечника и поступившие в его стенку, снова используются для
ресинтеза жиров. Биологический смысл этого процесса сводится к тому, что в
стенке кишечника синтезируются жиры, более специфичные для данного вида
животного и отличающиеся от пищевого жира. В известной степени это
обеспечивается тем, что в синтезе ТГ и ФЛ и в эстерификации ХС в кишечной
стенке принимают участие, наряду с экзогенными (пищевыми), и эндогенные ЖК,
доставляемые в клетки следующими путями : а) синтезированные заново в самих
клетках или “модифицированные”, например, путем удлинения цепи; б)
доставленные в клетки из кровеносного русла; в) синтезированные в печени и
попавшие сначала в кишечник в составе ФЛ желчи, а затем проникшие в
эпителиальные клетки кишечника в составе жировых мицелл. Кроме того , в
клетках кишечника происходит своеобразное перераспределение общего пула ЖК,
например, ЖК эндогенного происхождения может быть использована для
эстерификации ХС как экзогенного , так и эндогенного происхождения; ЖК,
ранее входившая в состав ФЛ, может быть использована для ресинтеза ТГ , и
наоборот.
В заключении следует подчеркнуть, что ресинтезированные и вновь
синтезированные в стенке кишечника липиды не поступают в чистом виде в
кровь, а используются для образования особых, богатых триглицеридами ,
липид-белковых комплексов – ХМ и в таком виде всасываются сначала в лимфу,
а затем в кровь