
- •Вопрос 1
- •Классификация липидов
- •Биологические функции липидов
- •Вопрос 2 принципы нормирования липидов в питании
- •Вопрос 3
- •Вопрос 4
- •5. Мицеллообразование
- •4. Синтез тг и фл.
- •Вопрос 5
- •Вопрос 6.
- •9) Химический состав и строение мицелл, механизм всасывания липидов.
- •Механизмы ресинтеза липидов в энтероцитах, значение.
- •4. Моноацилглицероловый путь синтеза тг и фл
- •5. Глицерофосфатный путь синтеза тг и фл
- •13. Обмен хиломикронов, значение (роль апопротеинов, печеночной и сосудистой липопротеинлипаз). Обмен хиломикронов
- •14. Биохимические причины, метаболические нарушения, клинические проявления нарушений обмена хиломикронов.
- •1. Абеталипопротеинемия (синдром Бассена-Корнцвейга)
- •Жировая ткань – белая и бурая: локализация, функции, субклеточный и химический состав, возрастные особенности.
- •Особенности метаболизма и функции бурой жировой ткани.
- •Лептин: химическая природа, регуляция биосинтеза и секреции, механизмы действия, физиологические и метаболические эффекты.
- •Особенности метаболизма белой жировой ткани
- •20.Механизм липолиза в белой жировой ткани: реакции, регуляция, значение
- •23.Подготовительная стадия b-окисления жирных кислот: реакция активации и челночный механизм транспорта жирных кислот через мембрану митохондрий – схема, регуляция.
- •Регуляция скорости β-окисления жк
- •Энергетический баланс окисления насыщенных жк с четным количеством атомов углерода
- •Энергетический баланс окисления ненасыщенных жк с четным количеством атомов углерода
- •Биохимия
- •Окисление глицерина до н2о и со2: схема, энергетический баланс.
- •Окисление тг до н2о и со2: схема, энергетический баланс.
- •Пол: понятие, роль в физиологии и патологии клетки. Перекисное окисление липидов
- •Сро: стадии и факторы инициации, реакции образования активных форм кислорода.
- •Образование активных форм кислорода
- •Аоз: ферментативная, неферментативная, механизмы. Антиоксидантная система
- •1. Ферментативная антиоксидантная система
- •2. Неферментативная антиоксидантная система
- •36. Пальмитилсинтетазный комплекс: структура, субклеточная локализация, функция, регуляция, последовательность реакций одного оборота процесса, энергетический баланс.
- •37. Реакции удлинения – укорочения жирных кислот, субклеточная локализация ферментов.
- •38. Десатурирующие системы жирных кислот: состав, локализация, функции, примеры (образование олеиновой кислоты).
- •39. Взаимосвязь биосинтеза жирных кислот с обменом углеводов и энергетическим обменом.
- •40. Гормональная регуляция биосинтеза жирных кислот и тг – механизмы, значение.
- •41.Реакции биосинтеза тг, тканевые и возрастные особенности, регуляция, значение.(лучше всего написано в красном учебнике стр 392-394,ну это все оттуда полностью)
- •42.Биосинтез холестерина: реакции до мевалоновой кислоты далее, схематично.
- •43.Особенности регуляции в кишечной стенке и других тканях биосинтеза хс; роль гормонов: инсулина, т3,т4, витамина рр.
- •44.Реакции образования и распада эфиров холестерина – роль ахат и гидролазы эхс, особенности тканевого распределения хс и его эфиров, значение.
- •45.Катаболизм хс, тканевые особенности, пути удаления из организма. Лекарственные препараты и пищевые вещества, снижающие содержание хс в крови.
- •Регуляция обмена липидов
- •1. Центральный уровень регуляции липидного обмена
- •3. Клеточный (метаболический) уровень регуляции липидного обмена
- •51. Межорганный уровень регуляции обмена липидов – понятие. Цикл Рендла, механизмы реализации.
- •53. Обмен лпонп, регуляция, значение; роль лпл, апо в-100, е и с2, лпвп
- •Обмен лпнп, регуляция, значение; роль апо в-100, в-клеточных рецепторов, ахат, блэх, лпвп.
- •55. Обмен лпвп, регуляция, значение; роль лхат, апо а и с, других классов лп
- •56.Обмен липидов в энтероцитах
- •4. Моноацилглицероловый путь синтеза тг и фл
- •5. Глицерофосфатный путь синтеза тг и фл
- •Транспорт липидов в организме
- •Нормальные значения холестерина
- •Нормальные значения
- •Обмен хиломикронов
- •Обмен β-липопротеинов
- •Обмен лпвп
- •57.Дислипопротеинемии
- •Абеталипопротеидемия
- •1. Абеталипопротеинемия (синдром Бассена-Корнцвейга)
- •2. Семейная гиперхолестеролемия (гиперлипопротеинемия типа iIа и iIв)
- •Хиломикронемия
- •Гиперхолестеролемия
- •58.Атеросклероз
- •63 Нарушения липидного обмена. Ожирение
- •1. Генетические факторы ожирения
- •2. Психологические факторы в развитии ожирения
- •3. Физическая активность
- •4. Несбалансированное питание, переедание
- •64. Лептин
- •Ожирение: механизмы взаимосвязи с сахарным диабетом и атеросклерозом.
- •Инсулинорезистентность: понятие, биохимические причины и механизмы развития, метаболические нарушения, взаимосвязь с ожирением.
- •Роль кахексина (фно-a) в развитии инсулиновой резистентности и ожирения. Кахексин (фно-)
55. Обмен лпвп, регуляция, значение; роль лхат, апо а и с, других классов лп
Липопротеины (ЛП) – это надмолекулярные комплексы сферической формы, состоящие из липидов, белков и углеводов. ЛП имеют гидрофильную оболочку и гидрофобное ядро. В гидрофильную оболочку входят белки и амфифильные липиды - ФЛ, ХС. В гидрофобное ядро входят гидрофобные липиды - ТГ, эфиры ХС и т.д. ЛП хорошо растворимы в воде.
ТГ, ФЛ, ХС, ЭХС и д.р. липиды транспортируются в крови в составе липопротеинов.
ЛПВП выполняют 2 основные функции: они поставляют апо другим ЛП в крови и участвуют в так называемом «обратном транспорте ХС». ЛПВП синтезируются в печени и в небольшом количестве в тонком кишечнике в виде насцентных ЛПВП. Они имеют дисковидную форму, небольшой размер и содержат высокий процент белков и фосфолипидов. В печени в ЛПВП включаются апопротеины А (активатор ЛХАТ, образование ЭХС, в печени), Е, С-II (активатор ЛПЛ, стимулирует гидролиз ТГ в ЛП, в печени), ЛХАТ. В крови апо С-II и апо Е переносятся с ЛПВП на ХМ и ЛПОНП. насцентные ЛПВП практически не содержат ХС и ТГ и в крови обогащаются ХС, получая его из других ЛП и мембран клеток.
Для переноса ХС в ЛПВП существует сложный механизм. На поверхности ЛПВП находится фермент ЛХАТ — лецитин: холестерол-ацилтрансфераза. Этот фермент превращает ХС в ЭХС. Реакция активируется апо A-I, входящим в состав ЛПВП.
ЭХС перемещается внутрь ЛПВП. Таким образом, ЛПВП обогащаются ЭХС. ЛПВП увеличиваются в размерах, из дисковидных небольших частиц превращаются в частицы сферической формы, которые называют ЛПВП3, или «зрелые ЛПВП». ЛПВП3 частично обменивают ЭХС на ТГ, содержащиеся в ЛПОНП, ЛППП и ХМ. В этом переносе участвует «белок, переносящий эфиры холестерина» - апо D. Таким образом, часть ЭХС переносится на ЛПОНП, ЛППП, а ЛПВП3 за счёт накопления ТГ увеличиваются в размерах и превращаются в ЛПВП2.
Часть ЛПВП захватывается клетками печени, взаимодействуя со специфическими для ЛПВП рецепторами к апо А-1. На поверхности клеток печени ФЛ и ТГ ЛППП, ЛПВП2 гидролизуются печёночной липазой, что дестабилизирует структуру поверхности ЛП и способствует диффузии ХС в гепатоциты. ЛПВП2 в результате этого опять превращаются в ЛПВП3 и возвращаются в кровоток.
Регуляция: Инсулин не только регулирует процесс расщепления жиров и концентрацию СЖК в крови, но также играет существенную роль в регуляции обмена ЛПОНП, ЛПВП и ЛПНП.
Лецитин: холестерол-ацил-трансфераза (ЛХАТ) находиться в ЛПВП, она переносит ацил с лецитина на ХС с образование ЭХС и лизолецитина. Ее активируют апо А-I, А-II и С-I.
лецитин + ХС → лизолецитин + ЭХС
ЭХС погружается в ядро ЛПВП или переноситься с участием апо D на другие ЛП.
Далее можно взять др. ЛП из предыдущих билетов.
56.Обмен липидов в энтероцитах
Липиды поступают в энтероциты как из просвета кишечника, так и из тканей. Большая часть липидов, поступивших в энтероцит, подвергается ресинтезу.
1. 1-МГ гидролизуется кишечной липазой до глицерина и жирной кислоты.
2. Короткоцепочечные жирные кислоты, ФЛ (кроме лецитина) и часть глицерина без изменений направляются из энтероцита в кровь.
3. Длинноцепочечные эндогенные и экзогенные жирные кислоты под действием ацил-КоА-синтетазы (тиокиназы) активируются, образуя Ацил~КоА:
RCOOH + HS-КоА + АТФ → Ацил~КоА + АМФ + ФФн