
- •Вопрос 1
- •Классификация липидов
- •Биологические функции липидов
- •Вопрос 2 принципы нормирования липидов в питании
- •Вопрос 3
- •Вопрос 4
- •5. Мицеллообразование
- •4. Синтез тг и фл.
- •Вопрос 5
- •Вопрос 6.
- •9) Химический состав и строение мицелл, механизм всасывания липидов.
- •Механизмы ресинтеза липидов в энтероцитах, значение.
- •4. Моноацилглицероловый путь синтеза тг и фл
- •5. Глицерофосфатный путь синтеза тг и фл
- •13. Обмен хиломикронов, значение (роль апопротеинов, печеночной и сосудистой липопротеинлипаз). Обмен хиломикронов
- •14. Биохимические причины, метаболические нарушения, клинические проявления нарушений обмена хиломикронов.
- •1. Абеталипопротеинемия (синдром Бассена-Корнцвейга)
- •Жировая ткань – белая и бурая: локализация, функции, субклеточный и химический состав, возрастные особенности.
- •Особенности метаболизма и функции бурой жировой ткани.
- •Лептин: химическая природа, регуляция биосинтеза и секреции, механизмы действия, физиологические и метаболические эффекты.
- •Особенности метаболизма белой жировой ткани
- •20.Механизм липолиза в белой жировой ткани: реакции, регуляция, значение
- •23.Подготовительная стадия b-окисления жирных кислот: реакция активации и челночный механизм транспорта жирных кислот через мембрану митохондрий – схема, регуляция.
- •Регуляция скорости β-окисления жк
- •Энергетический баланс окисления насыщенных жк с четным количеством атомов углерода
- •Энергетический баланс окисления ненасыщенных жк с четным количеством атомов углерода
- •Биохимия
- •Окисление глицерина до н2о и со2: схема, энергетический баланс.
- •Окисление тг до н2о и со2: схема, энергетический баланс.
- •Пол: понятие, роль в физиологии и патологии клетки. Перекисное окисление липидов
- •Сро: стадии и факторы инициации, реакции образования активных форм кислорода.
- •Образование активных форм кислорода
- •Аоз: ферментативная, неферментативная, механизмы. Антиоксидантная система
- •1. Ферментативная антиоксидантная система
- •2. Неферментативная антиоксидантная система
- •36. Пальмитилсинтетазный комплекс: структура, субклеточная локализация, функция, регуляция, последовательность реакций одного оборота процесса, энергетический баланс.
- •37. Реакции удлинения – укорочения жирных кислот, субклеточная локализация ферментов.
- •38. Десатурирующие системы жирных кислот: состав, локализация, функции, примеры (образование олеиновой кислоты).
- •39. Взаимосвязь биосинтеза жирных кислот с обменом углеводов и энергетическим обменом.
- •40. Гормональная регуляция биосинтеза жирных кислот и тг – механизмы, значение.
- •41.Реакции биосинтеза тг, тканевые и возрастные особенности, регуляция, значение.(лучше всего написано в красном учебнике стр 392-394,ну это все оттуда полностью)
- •42.Биосинтез холестерина: реакции до мевалоновой кислоты далее, схематично.
- •43.Особенности регуляции в кишечной стенке и других тканях биосинтеза хс; роль гормонов: инсулина, т3,т4, витамина рр.
- •44.Реакции образования и распада эфиров холестерина – роль ахат и гидролазы эхс, особенности тканевого распределения хс и его эфиров, значение.
- •45.Катаболизм хс, тканевые особенности, пути удаления из организма. Лекарственные препараты и пищевые вещества, снижающие содержание хс в крови.
- •Регуляция обмена липидов
- •1. Центральный уровень регуляции липидного обмена
- •3. Клеточный (метаболический) уровень регуляции липидного обмена
- •51. Межорганный уровень регуляции обмена липидов – понятие. Цикл Рендла, механизмы реализации.
- •53. Обмен лпонп, регуляция, значение; роль лпл, апо в-100, е и с2, лпвп
- •Обмен лпнп, регуляция, значение; роль апо в-100, в-клеточных рецепторов, ахат, блэх, лпвп.
- •55. Обмен лпвп, регуляция, значение; роль лхат, апо а и с, других классов лп
- •56.Обмен липидов в энтероцитах
- •4. Моноацилглицероловый путь синтеза тг и фл
- •5. Глицерофосфатный путь синтеза тг и фл
- •Транспорт липидов в организме
- •Нормальные значения холестерина
- •Нормальные значения
- •Обмен хиломикронов
- •Обмен β-липопротеинов
- •Обмен лпвп
- •57.Дислипопротеинемии
- •Абеталипопротеидемия
- •1. Абеталипопротеинемия (синдром Бассена-Корнцвейга)
- •2. Семейная гиперхолестеролемия (гиперлипопротеинемия типа iIа и iIв)
- •Хиломикронемия
- •Гиперхолестеролемия
- •58.Атеросклероз
- •63 Нарушения липидного обмена. Ожирение
- •1. Генетические факторы ожирения
- •2. Психологические факторы в развитии ожирения
- •3. Физическая активность
- •4. Несбалансированное питание, переедание
- •64. Лептин
- •Ожирение: механизмы взаимосвязи с сахарным диабетом и атеросклерозом.
- •Инсулинорезистентность: понятие, биохимические причины и механизмы развития, метаболические нарушения, взаимосвязь с ожирением.
- •Роль кахексина (фно-a) в развитии инсулиновой резистентности и ожирения. Кахексин (фно-)
Регуляция обмена липидов
Обмен (метаболизм) липидов состоит из процессов их синтеза и распада, которые регулируются на 3 уровнях:
1) центральном;
2) межорганном;
3) клеточном (метаболическом).
1. Центральный уровень регуляции липидного обмена
Центральный уровень регуляции липидного обмена осуществляется с участием нервной и эндокринной системы:
1. Кора мозга → эндокринные железы → органы и ткани
2. Кора мозга → симпатическая НС (нервные окончания) → норадреналин → β3 рецепторы жировой ткани
Механизм действия гормонов осуществляется через регуляцию количества и активности ключевых ферментов липолиза и липогенеза.
2. Межорганный уровень регуляции липидного обмена (Глюкозожирнокислотный цикл - цикл Рендла).
Какой процесс будет преобладать в организме — синтез липидов (липогенез) или их распад (липолиз), зависит от поступления пищи и физической активности. В абсорбтивном состоянии под действием инсулина происходит липогенез, в постабсорбтивном состоянии — липолиз, активируемый глюкагоном. Адреналин, секреция которого увеличивается при физической активности, также стимулирует липолиз.
3. Клеточный (метаболический) уровень регуляции липидного обмена
Метаболический уровень регуляции липидного обмена осуществляется с участием метаболитов – субстратов, продуктов и других БАВ. Избыток субстратов стимулирует их использование, а продукты ингибируют свое образование. Механизм – аллостерическая регуляция активности ферментов, индукция и репрессия ферментов.
Метаболический (клеточный) уровень регуляции обмена липидов, механизмы, примеры.
Клеточный (метаболический) уровень регуляции липидного обмена
Метаболический уровень регуляции липидного обмена осуществляется с участием метаболитов – субстратов, продуктов и других БАВ. Избыток субстратов стимулирует их использование, а продукты ингибируют свое образование. Механизм – аллостерическая регуляция активности ферментов, индукция и репрессия ферментов.
Например, ключевой фермент синтеза ЖК, АцетилКоА-карбоксилазу аллостерически активирует цитрат, а ингибирует пальмитоилКоА.
Высокие концентрации ЖК ингибируют аденилатциклазу, ТАГ-липазу, индуцируют ГМГ-КоА-синтазу.
ХС, желчные кислоты (в печени) репрессируют ГМГ-КоА-редуктазу.
Высокая концентрация НSКоА ингибирует ГМГ-КоА-синтазу.
51. Межорганный уровень регуляции обмена липидов – понятие. Цикл Рендла, механизмы реализации.
Энергетический гомеостаз обеспечивает энергетические потребности тканей с использованием различных субстратов.
Регуляция липидного обмена осуществляется на 3 уровнях:
центральный.
межорганный.
клеточный (метаболический).
Какой процесс будет преобладать в организме — синтез липидов (липогенез) или их распад (липолиз), зависит от поступления пищи и физической активности. В абсорбтивном состоянии под действием инсулина происходит липогенез, в постабсорбтивном состоянии — липолиз, активируемый глюкагоном. Адреналин, секреция которого увеличивается при физической активности, также стимулирует липолиз.
Абсорбтивный период
Абсорбтивным называют период пищеварения. В абсорбтивный период происходит поступление с пищей глюкозы, аминокислот и ТГ. Процесс пищеварения и высокая концентрации в крови глюкозы и аминокислот активирует секрецию инсулина и снижает секрецию глюкагона в поджелудочной железе.
Инсулин стимулирует использования метаболитов для запасания энергоносителей. Он активирует синтез гликогена в мышцах и печени, ТГ - в печени и жировой ткани, белков – в мышцах и печени.
Инсулин подавляет глюконеогенез в печени, липолиз в жировой ткани, катаболизм белков в мышцах и печени.
Главный потребитель глюкозы - печень, она фиксирует до 60% всей поступившей глюкозы. Синтезированные в печени и жировой ткани ТГ запасаются в основном в жировой ткани. Биосинтез ЖК de novo в жировой ткани человека протекает с высокой скоростью только после предшествующего голодания.
Постабсорбтивным называют период после завершения пищеварения до следующего приёма пищи. Голодание - это состояние, когда пища не принимается в течение суток и более.
Постабсорбтивный период
Снижение в постабсорбтивный период концентрации в крови глюкозы подавляет секрецию инсулина и стимулирует секрецию глюкагона в поджелудочной железе.
Глюкагон ускоряет процессы мобилизации депонированных энергоносителей. Он стимулирует липолиз в жировой ткани, гликогенолиз (гликоген расходуется за 18—24 ч), глюконеогенез (активируется через 4—6 ч после приема пищи), β-окисление ЖК в печени, катаболизм белков в мышцах и печени, запускает в печени синтез КТ из ЖК.
Глюкагон подавляет синтез гликогена в мышцах и печени, ЖК и ТГ - в печени и жировой ткани, белков – в мышцах и печени.
Метаболизм направлен, главным образом, на поддержание концентрации в крови глюкозы, которая служит основным энергетическим субстратом для мозга и единственным для эритроцитов.
В результате в крови повышается количество ЖК (в 2 раза), которые становятся важными источниками энергии для печени, мышц, сердца, почек, и жировой ткани. Т1/2 ЖК в крови тоже очень мал (менее 5 мин), что означает существование быстрого потока ЖК из жировой ткани к другим органам.
Период голодания
Голодание может быть кратковременным, в течение суток (I фаза), продолжаться в течение недели (II фаза) или нескольких недель (III фаза).
В отсутствие пищи в крови снижается уровень глюкозы, АК и ТГ. При низкой концентрации инсулина и высокой глюкагона, повышается концентрация кортизола.
Кортизол стимулирует катаболизм белков, аминокислот в тканях и анаболизм белков, аминокислот, глюконеогенез и синтез гликогена в печени, тормозит потребление глюкозы периферическими тканями. Избыток кортизола стимулирует липолиз в конечностях и липогенез в туловище и на лице, подавляют воспалительные и иммунные реакции, ингибируют фосфолипазу А2, вызывая гибель лейкоцитов.
На фоне преобладания процессов катаболизма липидов и белков происходит снижение общего метаболизма. Основным источником глюкозы при длительном голодании служит глюконеогенез. Глюкоза используется только инсулиннезависимыми тканями, в основном мозгом, эритроцитами. Обеспечение энергетических потребностей других тканей происходит за счёт ЖК и КТ.
I фаза голодания
Для глюконеогенеза быстро катаболизируют мышечные белки. ЖК, становятся основными источниками энергии для большинства органов. Начинается синтез КТ.
II фаза голодания
Мобилизация липидов продолжается, и концентрация ЖК в крови увеличивается в 3-4 раза по сравнению с постабсорбтивным периодом. Скорость синтеза КТ значительно возрастает, они используются, в основном, мышцами и немного мозгом. Концентрация КТ в крови может достигать 20—30 мг/дл (в норме 1-3 мг/дл).
III фаза голодания
Существенно увеличивается потребление мозгом КТ, а скорость окисления КТ в мышцах снижается.
При голодании более 3 недель скорость катаболизма белков стабилизируется до 20г/сутки, скорость глюконеогенеза снижается. При голодании более 4 недель развиваются атрофические процессы, при которых происходит значительная потеря белков. При потере 1/2-1/3 белков наступает смерть.
52. Центральный уровень регуляции обмена липидов: роль СНС и ПСНС - a и b рецепторов, гормонов – КХ, ГК, Т3, Т4, ТТГ, СТГ, инсулина, лептина, и др.
Центральный уровень регуляции липидного обмена осуществляется с участием нервной и эндокринной системы:
1. Кора мозга → эндокринные железы → органы и ткани
2. Кора мозга → симпатическая НС (нервные окончания) → норадреналин → β3 рецепторы жировой ткани
Механизм действия гормонов осуществляется через регуляцию количества и активности ключевых ферментов липолиза и липогенеза.
Инсулин
Основным гормоном, стимулирующим синтез липидов, является инсулин.
Инсулин ускоряет транспорт глюкозы в адипоциты.
Инсулин стимулирует образование необходимых для синтеза липидов субстратов: глицерофосфата, АцетилКоА, НАДФН2.
В печени и жировой ткани инсулин индуцирует синтез ключевых ферментов липогенеза цитратлиазы, Ацетил-КоА-карбоксилазы, пальмитатсинтазы, глицерофосфатацилтрансферазу и препятствует синтезу ключевого фермента липолиза ТАГ-липазы.
В жировой ткани инсулин индуцирует синтез ЛПЛ, что обеспечивает транспорт ЖК в ади-поциты.
Инсулин в гепатоцитах и адипоцитах активирует фосфопротеинфосфатазу. ФПФ дефос-форилирует и активирует ключевой фермент синтеза ЖК Ацетил-КоА-карбоксилазу, ключевой фермент синтеза ХС ГМГ-КоА-редуктазу.
ФПФ дефосфорилирует и инактивирует ключевой фермент липолиза ТАГ-липазу.
Инсулин активирует ФДЭ, которая снижает концентра¬цию цАМФ, прерывает эффекты контринсулярных гормонов: в печени и жировой ткани тормозит липолиз.
Катаболизм липидов стимулируют в основном глюкагон и адреналин, в меньшей степени глюкокортикоиды, тиреоидные гормоны, СТГ, АКТГ.
Контринсулярные гормоны
Контринсулярные гормоны: глюкагон, высокая концентрация адреналина (через β-рецепторы: β1, β2, β3), АКТГ, ТТГ, нейропептид Y через аденилатциклазную систему активи-руют ПК А, которая фосфорилирует и активирует ТАГ-липазу, что инициирует липолиз ТГ.
Низкая концентрация адреналина действует на α2-рецепторы адипоцитов, связанные с ингибирующим G-белком, что инактивирует аденилатциклазную систему, блокируя липолиз ТГ.
Глюкокортикоиды (кортизол) стимулируют синтез ТАГ-липазы. Избыток кортизола стимулирует липолиз в конечностях и липогенез в туловище и на лице. Глюкокортикоиды усиливают липолитическое действие катехоламинов и СТГ.
Тиреоидные гормоны ингибируют ФДЭ, блокируя эффекты инсулина, стимулируют липолиз в жировой ткани.
СТГ стимулирует синтез аденилатциклазы, активирует липолиз.
Липостат (массостат) — условное название системы, контролирующей постоянство веса тела. Липостат обеспечивается работой пищевого центра — сложного гипоталамо-лимбико-ретикуло-кортикального комплекса. Ведущим отделом пищевого центра являются латеральные ядра гипоталамуса. Липостатический гомеостаз обеспечивается путем прямых и обратных связей между:
гипоталамусом и кортиколимбическим структурами ЦНС
гипоталамусом и жировой тканью (с её гормонами)
гипоталамусом и ЖКТ (с его энтериновой гормональной системой).
Взаимосвязь ЖКТ и гипоталамуса
При приеме пищи выделяются кишечные гормоны энтериновой системы, которые ин-гибируют центр голода гипоталамуса:
Сильными ингибиторами чувства голода, аппетита и пищевой активности служит холецистокинин (дуоденальный гормон), арэнтерин (12-перстная кишка)
Менее активными ингибиторами центра голода являются бомбезин, соматостатин, са-тиетин, нейротензин, кортиколиберин, тиролиберин, вазоактивный интестинальный полипептид и инсулин.
Дериват тиролиберина — гистидилпролин дикетопиперазин — понижает аппетит, вы-зывает истощение. Обнаружен в крови больных психогенной анорексией.
Взаимосвязь ЦНС и гипоталамуса:
Эндорфины и энкефалины, а также соматолиберин (вырабатываются в энтериновой системе и в ЦНС) стимулируют центр голода гипоталамуса.
Норадреналин, известный как липолитический активатор, ингибирует центр голода гипоталамуса;
ингибируют центр голода гипоталамуса и другие β-адреномиметики, что используется при применении амфетаминов в качестве анорексигенов. Менее активен в качестве анорексигена серотонин.
Взаимосвязь жировой ткани и гипоталамуса:
В «сытом» состоянии адипоциты вырабатывают пептидные гормоны лептин (Дж. Скотт, 1994г) и кахексин.
Не знаю, куда это впихнуть: Стимулируют синтез рецепторов ЛПНП гормоны: инсулин и три- и тетрайодтиронин (Т3, Т4), половые гормоны, а глюкокортикоиды – уменьшают.