
- •Вопрос 1
- •Классификация липидов
- •Биологические функции липидов
- •Вопрос 2 принципы нормирования липидов в питании
- •Вопрос 3
- •Вопрос 4
- •5. Мицеллообразование
- •4. Синтез тг и фл.
- •Вопрос 5
- •Вопрос 6.
- •9) Химический состав и строение мицелл, механизм всасывания липидов.
- •Механизмы ресинтеза липидов в энтероцитах, значение.
- •4. Моноацилглицероловый путь синтеза тг и фл
- •5. Глицерофосфатный путь синтеза тг и фл
- •13. Обмен хиломикронов, значение (роль апопротеинов, печеночной и сосудистой липопротеинлипаз). Обмен хиломикронов
- •14. Биохимические причины, метаболические нарушения, клинические проявления нарушений обмена хиломикронов.
- •1. Абеталипопротеинемия (синдром Бассена-Корнцвейга)
- •Жировая ткань – белая и бурая: локализация, функции, субклеточный и химический состав, возрастные особенности.
- •Особенности метаболизма и функции бурой жировой ткани.
- •Лептин: химическая природа, регуляция биосинтеза и секреции, механизмы действия, физиологические и метаболические эффекты.
- •Особенности метаболизма белой жировой ткани
- •20.Механизм липолиза в белой жировой ткани: реакции, регуляция, значение
- •23.Подготовительная стадия b-окисления жирных кислот: реакция активации и челночный механизм транспорта жирных кислот через мембрану митохондрий – схема, регуляция.
- •Регуляция скорости β-окисления жк
- •Энергетический баланс окисления насыщенных жк с четным количеством атомов углерода
- •Энергетический баланс окисления ненасыщенных жк с четным количеством атомов углерода
- •Биохимия
- •Окисление глицерина до н2о и со2: схема, энергетический баланс.
- •Окисление тг до н2о и со2: схема, энергетический баланс.
- •Пол: понятие, роль в физиологии и патологии клетки. Перекисное окисление липидов
- •Сро: стадии и факторы инициации, реакции образования активных форм кислорода.
- •Образование активных форм кислорода
- •Аоз: ферментативная, неферментативная, механизмы. Антиоксидантная система
- •1. Ферментативная антиоксидантная система
- •2. Неферментативная антиоксидантная система
- •36. Пальмитилсинтетазный комплекс: структура, субклеточная локализация, функция, регуляция, последовательность реакций одного оборота процесса, энергетический баланс.
- •37. Реакции удлинения – укорочения жирных кислот, субклеточная локализация ферментов.
- •38. Десатурирующие системы жирных кислот: состав, локализация, функции, примеры (образование олеиновой кислоты).
- •39. Взаимосвязь биосинтеза жирных кислот с обменом углеводов и энергетическим обменом.
- •40. Гормональная регуляция биосинтеза жирных кислот и тг – механизмы, значение.
- •41.Реакции биосинтеза тг, тканевые и возрастные особенности, регуляция, значение.(лучше всего написано в красном учебнике стр 392-394,ну это все оттуда полностью)
- •42.Биосинтез холестерина: реакции до мевалоновой кислоты далее, схематично.
- •43.Особенности регуляции в кишечной стенке и других тканях биосинтеза хс; роль гормонов: инсулина, т3,т4, витамина рр.
- •44.Реакции образования и распада эфиров холестерина – роль ахат и гидролазы эхс, особенности тканевого распределения хс и его эфиров, значение.
- •45.Катаболизм хс, тканевые особенности, пути удаления из организма. Лекарственные препараты и пищевые вещества, снижающие содержание хс в крови.
- •Регуляция обмена липидов
- •1. Центральный уровень регуляции липидного обмена
- •3. Клеточный (метаболический) уровень регуляции липидного обмена
- •51. Межорганный уровень регуляции обмена липидов – понятие. Цикл Рендла, механизмы реализации.
- •53. Обмен лпонп, регуляция, значение; роль лпл, апо в-100, е и с2, лпвп
- •Обмен лпнп, регуляция, значение; роль апо в-100, в-клеточных рецепторов, ахат, блэх, лпвп.
- •55. Обмен лпвп, регуляция, значение; роль лхат, апо а и с, других классов лп
- •56.Обмен липидов в энтероцитах
- •4. Моноацилглицероловый путь синтеза тг и фл
- •5. Глицерофосфатный путь синтеза тг и фл
- •Транспорт липидов в организме
- •Нормальные значения холестерина
- •Нормальные значения
- •Обмен хиломикронов
- •Обмен β-липопротеинов
- •Обмен лпвп
- •57.Дислипопротеинемии
- •Абеталипопротеидемия
- •1. Абеталипопротеинемия (синдром Бассена-Корнцвейга)
- •2. Семейная гиперхолестеролемия (гиперлипопротеинемия типа iIа и iIв)
- •Хиломикронемия
- •Гиперхолестеролемия
- •58.Атеросклероз
- •63 Нарушения липидного обмена. Ожирение
- •1. Генетические факторы ожирения
- •2. Психологические факторы в развитии ожирения
- •3. Физическая активность
- •4. Несбалансированное питание, переедание
- •64. Лептин
- •Ожирение: механизмы взаимосвязи с сахарным диабетом и атеросклерозом.
- •Инсулинорезистентность: понятие, биохимические причины и механизмы развития, метаболические нарушения, взаимосвязь с ожирением.
- •Роль кахексина (фно-a) в развитии инсулиновой резистентности и ожирения. Кахексин (фно-)
36. Пальмитилсинтетазный комплекс: структура, субклеточная локализация, функция, регуляция, последовательность реакций одного оборота процесса, энергетический баланс.
Синтез ЖК происходит в абсорбтивный период.
Гликолиз + окислительное декарбоксилирование пирувата => АсКоА увелич. в МТХ
А синтез то ЖК в цитозоле! => осуществляется перенос АсКоА через внутреннюю мембрану МТХ
цитратсинтаза
АсКоА + Оксалоацетат Цитрат + HS-KoA
Транслоказа переносит в цитоплазму:
ПВК идет обратно в МТХ
НАДФН – источник Н+ (+ еще идет из ПФП)
АсКоА – исходный субстрат для синтеза ЖК
Образуется малонил-КоА (регуляторная реакция)
Ацетил-КоА-карбоксилаза
АсКоА + СО2 + АТФ НООС-СН2-СО~S-КоА + АДФ + Н3РО4
малонил
Дальше синтез продолжается на мультиферментативном комплексе – пальмитоилсинтетазе. Он состоит из 7 центров, обладающих разными каталитическими активностями. Комплекс последовательно удлиняет радикал ЖК на 2 атома углерода.
Последовательность реакций: (БЛЕЯТЬ! Ну и херь дальше!!!)
Перенос ацетила с КоА на SH-группу цистеина ацетилтрансацилазным центром;
Перенос малонила с КоА на SH-группу АПБ малонилтрансацилазным центром;
Кетоацилсинтазным центром ацетильная группа конденсируется с малонильной с образованием кетоацила и выделением СО2.
Кетоацил восстанавливается кетоацил-редуктазой до оксиацила;
Оксиацил дегидратируется гидратазой в еноил;
Еноил восстанавливается еноилредуктазой до ацила.
В результате первого цикла реакций образуется ацил с 4 атомами С (бутирил). Далее бутирил переносится из позиции 2 в позицию 1 (где находился ацетил в начале первого цикла реакций). Затем бутирил подвергается тем же превращениям и удлиняется на 2 атома С (от малонил-КоА).
Аналогичные циклы реакций повторяются до тех пор, пока не образуется радикал пальмитиновой кислоты, который под действием тиоэстеразного центра гидролитически отделяется от ферментного комплекса, превращаясь в свободную пальмитиновую кислоту.
Суммарное уравнение синтеза пальмитиновой кислоты из ацетил-КоА и малонил-КоА имеет следующий вид:
CH3-CO-SKoA + 7 HOOC-CH2-CO-SKoA + 14 НАДФН2 → C15H31COOH + 7 СО2 + 6
Н2О + 8 HSKoA + 14 НАДФ+
Регуляция:
Самого регуляторного фермента – ацетил-КоА-карбоксилазы
Диссоциация комплексных субъединиц фермента – неакт, а ассоциация – акт
Активатор: цитрат
Ингибитор: пальмитоил-КоА
А) Фосфорилирование фермента – неакт
Это в постабсорбтивный период, при физической работе → глюкагон, адреналин →аденилатциклазная система → активируется протеинкиназа А → фосфорилирование
Б) Дефосфорилирование фермента – акт
Абсорбтивный период → инсулин → активирует фосфатазу → под действием цитрата поляризация фермента → он активируется
37. Реакции удлинения – укорочения жирных кислот, субклеточная локализация ферментов.
Элонгация - удлинение ЖК.
ЖК могут синтезироваться в результате удлинение пальмитиновой кислоты и других более длинных ЖК.
для каждой длины ЖК существуют свои элонгазы.
идет в аЭПС
субстрат – любые ЖК
вместо синтетазы ЖК работает в качестве фермента КоА
продукт элонгации в гепатоците – стеариновая кислота, в нейронах – цереброновая, лингоцериновая ЖК
Удлинение цепи жирной кислоты происходит путем последовательного присоединения к соответствующему ацил-КоА двууглеродных фрагментов при участии малонил-КоА и НАДФН
Более подробная схема – учебник Северена (синий), стр. 416