
- •8) Контроль качества поверхности по картинам отражения когерентного света лазера
- •9) Эллипсометрические методы контроля
- •12) Растровая электронная микроскопия (рэм)
- •13) Рентгеновский микрозондовый анализ (рма)
- •14) Туннельная и атомно-силовая сканирующая микроскопия (принцип действия, перспективы)
- •11) Просвечивающая электронная микроскопия (пэм)
13) Рентгеновский микрозондовый анализ (рма)
Р
МА
представляет собой анализ спектра
квантов, попадающей в электронном луче.
При облучении атомов электронным
пучком, ускоренные электроны пучка
способны пробить все электронные
оболочки атома, выбивая с каждой из них
мы. На освободившиеся места с более
высоких орбит падают электроны. Избыток
своей энергии эти электроны испускают
в виде квантов электромагнитного
излучения (ЭМИ). Если выбивание электронов
происходит из электронных оболочек
ближайших к ядру, то падение электронов
на высвободившиеся места этих оболочек
сопровождается излучениями рентгеновских
квантов.
Особенностью работы РЭМ в режиме РМА является то, что рентгеновское излучение идет не из точки, а из области.
Если электронный луч попадет на участок, состоящий из атомов одного вида, но рядом располагаются участки из атомов другого вида, электроны не поверхности, а в толще образца могут проникнуть в зону соседнего участка и вызвать тем самым рентгеновское излучение. В результате направив луч на участок, состоящий из атомов одного вида, мы получим спектр, соответствующий атомам 2-х типов. Это основная погрешность РМА. Это называется флюросцентным возбуждением. Вследствие него минимальная область, допускающая анализ РМА составляет 1 – 2 мкм.
14) Туннельная и атомно-силовая сканирующая микроскопия (принцип действия, перспективы)
Принцип работы атомно-силового микроскопа основан на регистрации силового взаимодействия между поверхностью исследуемого образца и зондом. В качестве зонда используется наноразмерное остриё, располагающееся на конце упругой консоли, называемой кантилевером. Сила, действующая на зонд со стороны поверхности, приводит к изгибу консоли. Появление возвышенностей или впадин под остриём приводит к изменению силы, действующей на зонд, а значит, и изменению величины изгиба кантилевера. Таким образом, регистрируя величину изгиба, можно сделать вывод о рельефе поверхности.
Под силами, действующими между зондом и образцом, в первую очередь подразумевают дальнодействующие силы Ван-дер-Ваальса, которые сначала являются силами притяжения, а при дальнейшем сближении переходят в силы отталкивания. В зависимости от характера действия силы между кантилевером и поверхностью образца выделяют три режима работы атомно-силового микроскопа:
Контактный (англ. contact mode)
«Полуконтактный» (англ. semi-contact mode или tapping mode)
Бесконтактный (англ. non-contact mode)
Здесь необходимо пояснить, что именно берётся за ноль расстояния во избежание путаницы. На приведённом рисунке ноль соответствует нулевому расстоянию между ядрами атома на поверхности и наиболее выступающего атома кантилевера. Поэтому ноль силы находится на конечном расстоянии, соответствующем границе электронных оболочек этих атомов (при перекрытии оболочек возникает отталкивание). Если взять за ноль границы атомов, то сила обратится в ноль в нуле расстояния. В сравнении с растровым электронным микроскопом (РЭМ) атомно-силовой микроскоп обладает рядом преимуществ. Так, в отличие от РЭМ, который даёт псевдотрёхмерное изображение поверхности образца, АСМ позволяет получить истинно трёхмерный рельеф поверхности. Кроме того, непроводящая поверхность, рассматриваемая с помощью АСМ, не требует нанесения проводящего металлического покрытия, которое часто приводит к заметной деформации поверхности. Для нормальной работы РЭМ требуется вакуум, в то время как большинство режимов АСМ могут быть реализованы на воздухе или даже в жидкости. Данное обстоятельство открывает возможность изучения биомакромолекул и живых клеток. В принципе, АСМ способен дать более высокое разрешение, чем РЭМ. Так было показано, что АСМ в состоянии обеспечить реальное атомное разрешение в условиях сверхвысокого вакуума. Сверхвысоковакуумный АСМ по разрешению сравним со сканирующим туннельным микроскопом и просвечивающим электронным микроскопом.
К недостатку АСМ при его сравнении с РЭМ также следует отнести небольшой размер поля сканирования. РЭМ в состоянии просканировать область поверхности размером в несколько миллиметров в латеральной плоскости с перепадом высот в несколько миллиметров в вертикальной плоскости. У АСМ максимальный перепад высот составляет несколько микрон, а максимальное поле сканирования в лучшем случае порядка 150×150 микрон². Другая проблема заключается в том, что при высоком разрешении качество изображения определяется радиусом кривизны кончика зонда, что при неправильном выборе зонда приводит к появлению артефактов на получаемом изображении.
Обычный АСМ не в состоянии сканировать поверхность также быстро, как это делает РЭМ. Для получения АСМ-изображения требуется от нескольких минут до нескольких часов, в то время как РЭМ после откачки способен работать практически в реальном масштабе времени хотя и с относительно невысоким качеством. Из-за низкой скорости развёртки АСМ получаемые изображения оказываются искажёнными тепловым дрейфом, что уменьшает точность измерения элементов сканируемого рельефа. Для увеличения быстродействия АСМ было предложено несколько конструкций, среди которых можно выделить зондовый микроскоп, названный видеоАСМ. ВидеоАСМ обеспечивает получение удовлетворительного качества изображений поверхности с частотой телевизионной развёртки, что даже быстрее, чем на обычном РЭМ. Однако, применение ВидеоАСМ ограничено, так как он работает только в контактном режиме и на образцах с относительно небольшим перепадом высот. Для коррекции вносимых термодрейфом искажений было предложено несколько способов. Нелинейность, гистерезис и ползучесть (крип) пьезо-керамики сканера также являются причинами сильных искажения АСМ-изображений. Кроме того, часть искажений возникает из-за взаимных паразитных связей, действующих между X, Y, Z-манипуляторами сканера. Для исправления искажений в реальном масштабе времени современные АСМ используют программное обеспечение (н-р, особенность – ориентированное сканирование) либо сканеры, снабжённые замкнутыми следящими системами, в состав которых входят линейные датчики положения. Некоторые АСМ вместо сканера в виде пьезотрубки используют XY и Z-элементы, механически несвязанные друг с другом, что позволяет исключить часть паразитных связей. Однако в определённых случаях, например, при совмещении с электронным микроскопом или ультрамикротомами конструктивно оправдано использование именно сканеров на пьезотрубках. АСМ можно использовать для определения типа атома в кристаллической решётке.