
- •27. Полупроводниковые фотоэлектрические преобразователи энергии
- •[Править]Физический принцип работы фотоэлемента
- •[Править]Фотоэлементы промышленного назначения
- •34. Основные параметры
- •37. Определение h-параметров по статическим характеристикам
- •42. Вольт-амперная характеристика (вах) полупроводникового диода Что такое идеальный диод?
- •Вах реального полупроводникового диода
- •Vϒ(гамма) - напряжение порога проводимости
- •Id_max - максимальный ток через диод при прямом включении
- •Piv(Peak Inverse Voltage) - Напряжение пробоя
- •Паразитическая емкость pn-перехода
- •Приближенные модели диодов
- •Полупроводниковые индикаторы
- •Жидкокристаллические индикаторы David g. Baldwin, James r. Rubin, Afsaneh Gerami
- •50. Полупроводниковые индикаторы
- •51. Жидкокристаллические индикаторы David g. Baldwin, James r. Rubin, Afsaneh Gerami
- •64. Двуполупериодный выпрямитель
[Править]Фотоэлементы промышленного назначения
На солнечных электростанциях (СЭС) можно использовать разные типы ФЭП, однако не все они удовлетворяют комплексу требований к этим системам:
высокая надёжность при длительном (до 25—30 лет) ресурсе работы;
высокая доступность сырья и возможность организации массового производства;
приемлемые с точки зрения сроков окупаемости затрат на создание системы преобразования;
минимальные расходы энергии и массы, связанные с управлением системой преобразования и передачи энергии (космос), включая ориентацию и стабилизацию станции в целом;
удобство техобслуживания.
Некоторые перспективные материалы трудно получить в необходимых для создания СЭС количествах из-за ограниченности природных запасов исходного сырья или сложности его переработки. Отдельные методы улучшения энергетических и эксплуатационных характеристик ФЭП, например за счёт создания сложных структур, плохо совместимы с возможностями организации их массового производства при низкой стоимости и т. д.[источник не указан 865 дней]
Высокая производительность может быть достигнута лишь при организации полностью автоматизированного производства ФЭП, например на основе ленточной технологии, и создании развитой сети специализированных предприятий соответствующего профиля, то есть фактически целой отрасли промышленности, соизмеримой по масштабам с современной радиоэлектронной промышленностью[источник не указан 865 дней]. Изготовление фотоэлементов и сборка солнечных батарей на автоматизированных линиях обеспечит многократное снижение себестоимости батареи.
Наиболее вероятными материалами для фотоэлементов СЭС считаются кремний, Cu(In,Ga)Se2 и арсенид галлия (GaAs), причём в последнем случае речь идёт огетерофотопреобразователях (ГФП) со структурой AlGaAs-GaAs
28-29. Транзистором называется полупроводниковый прибор, предназначенный для усиления и генерирования электрических колебаний. Он представляет собой кристалл, помещенный в корпус, снабженный выводами. Кристалл изготовляют из полупроводникового материала. По своим электрическим свойствам полупроводники занимают некоторое промежуточное положение между проводниками и непроводниками тока (изоляторами). Небольшой кристалл полупроводникового материала (полупроводника) после соответствующей технологической обработки становится способным менять свою электропроводность в очень широких пределах при подведении к нему слабых электрических колебаний и постоянного напряжения смещения. Кристалл помещают в металлический или пластмассовый корпус и снабжают тремя выводами, жесткими или мягкими, присоединенными к соответствующим зонам кристалла. Металлический корпус иногда имеет собственный вывод, но чаща с корпусом соединяют один из трех электродов транзистора.
В настоящее время находят применение транзисторы двух видов — биполярные и полевые. Биполярные транзисторы появились первыми и получили наибольшее распространение. Поэтому обычно их называют просто транзисторами. Полевые транзисторы появились позже и пока используются реже биполярных.
Биполярными транзисторы называют потому, что электрический ток в них образуют электрические заряды положительной и отрицательной полярности. Носители положительных зарядов принято называть дырками, отрицательные заряды переносятся электронами. В биполярном транзисторе используют кристалл из германия или кремния — основных полупроводниковых материалов, применяемых для изготовления транзисторов и диодов. Поэтому и транзисторы называют одни кремниевыми, другие — : германиевыми. Для обоих разновидностей биполярных транзисторов характерны свои особенности, которые обычно учитывают при проектировании устройств.
Для изготовления кристалла используют сверхчистый материал, в который добавляют специальные строго дозированные; примеси. Они и определяют появление в кристалле проводимости, обусловленной дырками (р-проводимость) или электронами (n-проводимость). Таким образом формируют один из электродов транзистора, называемый базой. Если теперь в поверхность кристалла базы ввести тем или иным технологическим способом специальные примеси, изменяющие тип проводимости базы на обратную так, чтобы образовались близколежащие зоны n-р-n или р-n-р, и к каждой зоне подключить выводы, образуется транзистор. Одну из крайних зон называют эмиттером, т. е. источником носителей заряда, а вторую — коллектором, собирателем этих носителей. Зона между эмиттером и коллектором называется базой. Выводам транзистора обычно присваивают названия, аналогичные его электродам. Усилительные свойства транзистора проявляются в том, что если теперь к эмиттеру и базе приложить малое электрическое напряжение — входной сигнал, то в цепи коллектор — эмиттер потечет ток, по форме повторяющий входной ток входного сигнала между базой и эмиттером, но во много раз больший по значению.
Для нормальной работы транзистора в первую очередь необходимо подать на его электроды напряжение питания. При этом напряжение на базе относительно эмиттера (это напряжение часто называют напряжением смещения) должно быть равно нескольким десятым долям вольта, а на коллекторе относительно эмиттера — несколько вольт.
Включение в цепь n-р-n и р-n-р транзисторов отличается только полярностью напряжения на коллекторе и смещения. Кремниевые и германиевые транзисторы одной и той же структуры отличаются между собой лишь значением напряжения смещения. У кремниевых оно примерно на 0,45 В больше, чем у герма ниевых.
Рис. 1
На рис. 1 показаны условные графические обозначения транзисторов той и другой структуры, выполненных на основе германия и кремния, и типовое напряжение смещения. Электроды транзисторов обозначены первыми буквами слов: эмиттер — Э, база — Б, коллектор — К. Напряжение смещения (или, как принято говорить, режим) показано относительно эмиттера, но на практике напряжение на электродах транзистора указывают относительно общего провода устройства. Общим проводом в устройстве и на схеме называют провод, гальванически соединенный с входом, выходом и часто с источником питания, т. е. общий для входа, выхода и источника питания.
Усилительные и другие свойства транзисторов характеризуются рядом электрических параметров, наиболее важные из которых рассмотрены ниже.
Статический коэффициент передачи тока базы h21Э показывает, во .сколько раз ток коллектора биполярного транзистора больше тока его базы, вызвавшего этот ток. У большинства типов транзисторов численное значение этого коэффициента от экземпляра к экземпляру может изменяться от 20 до 200. Есть транзисторы и с меньшим значением — 10...15, и с большим — до 50...800 (такие называют транзисторами со сверхусилением). Нередко считают, что хорошие результаты можно получить только с транзисторами, имеющими большое значение h21э. Однако практика показывает, что при умелом конструировании аппаратуры вполне можно обойтись транзисторами, имеющими h2lЭ, равный всего 12...20. Примером этого может служить большинство конструкций, описанных в этой книге.
Частотными свойствами транзистора учитывается тот факт, что транзистор способен усиливать электрические сигналы с частотой, не превышающей определенного для каждого транзистора предела. Частоту, на которой транзистор теряет свои усилительные свойства, называют предельной частотой усиления транзистора. Для того, чтобы транзистор мог обеспечить значительное усиление сигнала, необходимо, чтобы максимальная рабочая частота сигнала была по крайней мере в 10...20 раз меньше предельной частоты fт транзистора. Например, для эффективного усиления сигналов низкой частоты (до 20 кГц) применяют низкочастотные транзисторы, предельная частота которых не менее 0,2...0,4 МГц. Для усиления сигналов радиостанций длинноволнового и средневолнового диапазонов волн (частота сигнала не выше .1,6 МГц)| пригодны лишь высокочастотные транзисторы с предельной частотой не ниже 16...30 МГц.
Максимальная допустимая рассеиваемая мощность — это наибольшая мощность, которую может рассеивать транзистор в течение длительного времени без опасности выхода из строя. В справочниках по транзисторам обычно указывают максимальную допустимую мощность коллектора Яктах, поскольку именно в цепи коллектор — эмиттер выделяется наибольшая мощность и действуют наибольшие ток и напряжение. Базовый и коллекторный токи, протекая по кристаллу транзистора, разогревают его. Германиевый кристалл может нормально работать при температуре не более 80, а кремниевый — не более 120°С. Тепло, которое выделяется в кристалле, отводится в окружающую, среду через корпус транзистора, а также и через дополнительный теплоотвод (радиатор), которым дополнительно снабжают транзисторы большой мощности.
В зависимости от назначения выпускают транзисторы малой, средней и большой мощности. Маломощные используют главным образом для усиления и преобразования слабых сигналов низкой и высокой частот, мощные — в оконечных ступенях усиления и генерации электрических колебаний низкой и высокой частот. Усилительные возможности ступени на биполярном транзисторе зависят не только от того, какой он мощности, а сколько от того, какой конкретно выбран транзистор, в каком режиме работы по переменному и постоянному току он работает (в частности, каковы ток коллектора и напряжение между коллектором и эмиттером), каково соотношение рабочей частоты сигнала и предельной частоты транзистора.
Полевой транзистор представляет собой полупроводниковый прибор, в котором управление током между двумя электродами, образованным направленным движением носителей заряда дырок или электронов, осуществляется электрическим полем, создаваемым напряжением на третьем электроде. Электроды, между Которыми протекает управляемый ток, иоСят название истока и стока, причем истоком считают тот электрод, из которого выходят (истекают) носители заряда. Третий, управляющий, электрод называют затвором. Токопроводящий участок полупроводникового материала между истоком и стоком принято называть каналом, отсюда еще одно название этих транзисторов — канальные. Под действием напряжения на затворе» относительно истока меняется сопротивление канала» а значит, и ток через него.
В зависимости от типа носителей заряда различают транзисторы с n-каналом или р-каналом. В n-канальных ток канала обусловлен направленным движением электронов, а р-канальных — дырок. В связи с этой особенностью полевых транзисторов их иногда называют также униполярными. Это название подчеркивает, что ток в них образуют носители только одного знака, что и отличает полевые транзисторы от биполярных.
Для изготовления полевых транзисторов используют главным образом кремний, что связано с особенностями технологии их производства.
Рассмотрим основные параметры полевых транзисторов.
Крутизна входной характеристики S или проводимость прямой передачи тока Y21 указывает, на сколько миллиампер изменяется ток канала при изменении входного напряжения между затвором и истоком на 1 В. Поэтому значение крутизны входной характеристики определяется в мА/В, так же как и крутизна характеристики радиоламп. Современные полевые транзисторы имеют крутизну от десятых долей до десятков и даже сотен миллиампер на вольт. Очевидно, что чем больше крутизна, тем большее усиление может дать полевой транзистор. Но большим значениям крутизны соответствует большой ток канала. Поэтому-на практике обычно выбирают такой ток канала, при котором, о одной стороны, достигается требуемое усиление, а с другой — обеспечивается необходимая экономичность в расходе тока.
Частотные свойства полевого транзистора, так же как и! биполярного, характеризуются значением предельной частоты. Полевые транзисторы тоже делят на низкочастотные, среднечастотные и высокочастотные, и также для получения большого усиления максимальная частота сигнала должна быть по крайней мере в 10...20 раз меньше предельной частоты транзистора.
Максимальная допустимая постоянная рассеиваемая мощность полевого транзистора определяется точно так же, как и для биполярного. Промышленность выпускает полевые транзисторы малой, средней и большой мощности.
Для нормальной работы полевого транзистора на его электродах должно действовать постоянное напряжение начального смещения. Полярность напряжения смещения определяется типом канала (n или р), а значение этого напряжения — конкретным типом транзистора. Здесь следует указать, что среди полевых транзисторов значительно больше разнообразие конструкций кристалла, чем среди биполярных. Наибольшее распространение в любительских конструкциях и в изделиях промышленного производства получили полевые транзисторы с так называемым встроенным каналом и р-n переходом. Они неприхотливы в эксплуатации, работают в широких частотных пределах, обладают высоким входным сопротивлением, достигающим на низкой частоте нескольких мегаом, а на средней и высокой частотах — нескольких десятков или сотен килоом в зависимости от серии. Для сравнения укажем, что биполярные транзисторы имеют значительно меньшее входное сопротивление, обычно близкое к 1...2 кОм, и лишь ступени на составном транзисторе могут иметь большее входное сопротивление. В этом со-состоит большое преимущество полевых транзисторов перед биполярными.
Рис. 2
На рис. 2 показаны условные обозначения полевых транзисторов со встроенным каналом и р-n переходом, а также указаны и типовые значения напряжения смещения. Выводы обозначены в соответствии с первыми буквами названий электродов. Характерно, что для транзисторов с р-каналом напряжение на стоке относительно истока должно быть отрицательным, а на затворе относительно истока — положительным, а для транзистора с n-каналом — наоборот.
В промышленной аппаратуре и реже в радиолюбительской находят также применение полевые транзисторы с изолированным затвором. Такие транзисторы имеют еще более высокое входное сопротивление, могут работать на очень высоких частотах. Но у них есть существенный недостаток — низкая электрическая прочность изолированного затвора. Для его пробоя и выхода транзистора из строя вполне достаточно даже слабого заряда статического электричества, который всегда есть на теле человека, на одежде, на инструменте. По этой причине выводы полевых транзисторов с изолированным затвором при хранении следует связывать вместе мягкой голой проволокой, при монтаже транзисторов руки и инструменты нужно «заземлять», используют и другие защитные мероприятия.
30-32.
Схемы включения транзистора |
Как
было рассмотрено на примере, для усиления
электрического сигнала в цепь транзистора
необходимо включить два источника –
входного сигнала
и
питания
.
Поскольку транзистор имеет три вывода
(эмиттер, база, коллектор), а два источника
питания имеют четыре вывода, то обязательно
один из выводов транзистора будет общим
для обоих источников, т. е. одновременно
будет принадлежать и входной цепи и
выходной. По этому признаку различают
три возможных схемы включения: с
общей базой, с
общим эмиттером и с
общим коллектором.
3.3.1. Схема с общей базой
3.3.2. Схема с общим эмиттером
3.3.3. Схема с общим коллектором
3.3.1. Схема с общей базой |
Рассмотренный выше пример построения усилителя электрических сигналов с помощью транзистора является схемой включения с общей базой. На рис. 3.5. приведена электрическая принципиальная схема включения транзистора с общей базой.
Рис.
3.5. Включение транзистора по схеме с
общей базой
Основные параметры, характеризующие эту схему включения получим следующим образом:
1. Коэффициент передачи по току:
|
(3.3) |
2. Входное сопротивление:
|
(3.4) |
Из
(3.4) следует, что входное сопротивление
транзистора, включенного в схему с общей
базой, очень невелико и определяется,
в основном, сопротивлением
эмиттерного p-n-перехода
в прямом направлении. На практике оно
составляет единицы – десятки
.
Это следует отнести к недостаткам
усилительного каскада, так как приводит
к нагружению источника входного сигнала.
3. Коэффициент передачи по напряжению:
|
(3.5) |
Коэффициент
передачи по напряжению может быть
достаточно большим (десятки – сотни
единиц), так как определяется, в основном,
соотношением между сопротивлением
нагрузки
и
входным сопротивлением.
4. Коэффициент передачи по мощности:
|
(3.6) |
Для реальных схем коэффициент передачи по мощности равняется десятки – сотни единиц.
3.3.2. Схема с общим эмиттером |
В
этой схеме, (рис. 3.6), по-прежнему
источник входного сигнала
включен
в прямом направлении по отношению к
эмиттерному переходу, а источник
питания
включен
в обратном направлении по отношению к
коллекторному переходу, и в прямом по
отношению к эмиттерному. Под действием
источника входного сигнала
в
базовой цепи протекает ток
;
происходит инжекция носителей из
эмиттерной области в базовую; часть из
них под действием поля коллекторного
перехода перебрасывается в коллекторную
область, образуя, таким образом, ток в
цепи коллектора
,
который протекает под действием источника
питания
через
эмиттер и базу. Поэтому:
|
(3.7) |
Рис.
3.6. Включение транзистора по схеме с
общим эмиттером
Входным током является ток базы , а выходным – ток коллектора . Выходным напряжением является падение напряжения на сопротивлении нагрузки . Основные параметры, характеризующие эту схему включения определим из выражений:
1. Коэффициент усиления по току :
|
(3.8) |
поделив
в этом выражении числитель и знаменатель
дроби на ток эмиттера
,
получим:
|
(3.9) |
Из
(3.9) видно, что в схеме с общим эмиттером
коэффициент передачи по току достаточно
большой, так как
–
величина, близкая к единице, и составляет
десятки – сотни единиц.
2. Входное сопротивление транзистора в схеме с общим эмиттером:
|
(3.10) |
поделив в этом выражении числитель и знаменатель на ток эмиттера , получим:
|
(3.11) |
Отсюда
следует, что:
,
т. е. по этому параметру схема с общим
эмиттером значительно превосходит
схему с общей базой. Для схемы с общим
эмиттером входное сопротивление лежит
в диапазоне сотни
–
единицы
.
3. Коэффициент передачи по напряжению:
|
(3.12) |
Подставляя
сюда
из
(3.10), получим:
|
(3.13) |
т. е.
коэффициент передачи по напряжению в
этой схеме точно такой же, как и в схеме
с общей базой –
и
составляет десятки – сотни единиц.
4. Коэффициент передачи по мощности:
|
(3.14) |
Что значительно больше, чем в схеме с общей базой (сотни – десятки тысяч единиц).
3.3.3. Схема с общим коллектором |
Исходя из принятых отличительных признаков схема включения транзистора с общим коллектором должна иметь вид (рис. 3.7). Однако в этом случае транзистор оказывается в инверсном включении, что нежелательно из-за ряда особенностей, отмеченных выше. Поэтому в схеме (рис. 3.7, а) просто механически меняют местами выводы эмиттера и коллектора и получают нормальное включение транзистора (рис. 3.7, б). В этой схеме сопротивление нагрузки включено во входную цепь; входным током является ток базы ; выходным током является ток эмиттера .
Основные параметры этой схемы следующие:
1. Коэффициент усиления по току:
|
(3.15) |
Рис.
3.7. Включение транзистора по схеме с
общим коллектором
Поделив числитель и знаменатель этой дроби на ток эмиттера , получим:
|
(3.16) |
т. е. коэффициент передачи по току в схеме с общим коллектором почти такой же, как в схеме с общим эмиттером:
.
2. Входное сопротивление:
|
(3.17) |
Преобразуя это выражение, получим:
|
(3.18) |
Из (3.18) следует, что входное сопротивление в этой схеме включения оказывается наибольшим из всех рассмотренных схем (десятки – сотни ).
3. Коэффициент усиления по напряжению:
|
(3.19) |
Преобразуем это выражение с учетом выражений (3.16) и (3.18):
|
(3.20) |
Поскольку
представляет
собой очень малую величину, то можно
считать, что
,
т. е. усиления по напряжению в этой
схеме нет.
4. Коэффициент усиления по мощности:
|
(3.21) |
на практике он составляет десятки – сотни единиц.
Схему с общим коллектором часто называют эмиттерным повторителем, потому что, во-первых, нагрузка включена здесь в цепь эмиттера, а во-вторых, выходное напряжение в точности повторяет входное и по величине ( ) и по фазе.
Схема с общим эмиттером является наиболее распространенной, т. к. дает наибольшее усиление по мощности из всех схем.
Схема с общей базой хоть и имеет меньшее усиление по мощности и имеет меньшее входное сопротивление, все же ее иногда применяют на практике, т. к. она имеет лучшие температурные свойства.
Схему с общим коллектором очень часто применяют в качестве входного каскада усиления из-за его высокого входного сопротивления и способности не нагружать источник входного сигнала.
Таблица 3.2.
Параметры
схем включения биполярного транзистора