Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы физика.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
470.67 Кб
Скачать

Билет 4

1) Все дифференциальные уравнения можно разделить на обыкновенные дифференциальные уравнения(ОДУ),в которые входят только функции (и их производные) от одного аргумента, и уравнения с частными производными, в которых входящие функции зависят от многих переменных. Если диф. уравнение содержит только одну переменную х, то говорят, что это диф. ур. обыкновенное Порядком или степенью дифференциального уравнения называется наибольший порядок производных, входящих в дифференциальное уравнение.

Дифференциальные уравнения с разделяющимися переменными приводятся к ОДУ с разделенными переменными делением обеих частей уравнения на произведение f2(y) ⋅ g1(x). Диф. Ур. С разделяющимися переменными обусловлены тем, что все остальные типы сводятся к уравнению с разделяющимися переменными. Имеет следующий вид: Р(х)+Q(Y)dy/dx=0, Р(х)+Q(Y)dy =0,D(Y)+S(Y)+C=0.

2) Ультразвук - упругие волны высокой частоты, которым посвящены специальные разделы науки и техники. Человеческое ухо воспринимает распространяющиеся в среде упругие волны частотой приблизительно до 16 000 колебаний в секунду (Гц); колебания с более высокой частотой представляют собой ультразвук (за пределом слышимости). Обычно ультразвуковым диапазоном считают полосу частот от 18 000 герц. Хотя о существовании ультразвука ученым было известно давно, практическое использование его в науке, технике и промышленности началось сравнительно недавно. Сейчас ультразвук широко применяется в различных физических и технологических методах. По скорости распространения звука в среде судят о ее физических характеристиках. Измерения скорости на ультразвуковых частотах производятся с очень большой точностью; вследствие этого с весьма малыми погрешностями определяются, например, адиабатические характеристики быстропротекающих процессов, значения удельной теплоемкости газов, упругие постоянные твердых тел. Ультразвук по определению не воспринимается непосредствен-но органами чувств человека, и поэтому необходимо использовать какой-то физическийэффект или последовате-льность таких эффектов, чтобы действие ультразвукамогло проявиться, причем главным образом количественно. Таким образом,выбор метода для конкретной задачи производится сточки зрения удобства егоприменения, а также точности измерения интересующего параметраакустического поля. Применение АКУШЕРСТВО, ОФТАЛЬМОЛОГИЯ, ИССЛЕДОВАНИЕ ВНУТРЕННИХ ОРГАНОВ, ПРИПОВЕРХНОСНЫЕ И НАРУЖНЫЕОРГАНЫ, КАРДИОЛОГИЯ, НЕВРОЛОГИЯ, Болеутоляющее действие, Повышение подвижности суставов,Уменьшение мышечного спазма. Все процедуры должны выполнятся хорошо обученным персоналом или под егоруководством.Если следовать этим рекомендациям, то ультразвук можно эффективноиспользовать в медицине с большой уверенностью в его безопасности В технике ультразвук получают с помощью устройств, называемые УЗ-излучателями (генераторы УЗ). Наибольшее распространение получили электромеханические излучатели, основанные на явлениях магнитострикционного эффекта и обратного пьезоэлектрического эффекта.

Магнитострикционные излучатели применяются для генерирования низкочастотных ультразвуков (до 80 кГц).Пьезоэлектрические излучатели применяются для генерирования ультразвуков с частотами до 50 МГц.Явление обратного пьезоэлектрического эффекта заключается в механической деформации некоторых материалов (кристаллы кварца и турмалина, сегнетова соль, фосфорнокислый аммоний, керамический материал на основе титаната бария) под действием переменного электрического поля. Приемники ультразвука.В качестве приемников ультразвука на низких и средних частотах чаще всего применяют электроакустические преобразователи пьезоэлектрического типа. Такие приемники позволяют воспроизводить форму акустического сигнала, то есть временную зависимость звукового давления. В зависимости от условий применения приемники делают либо резонансными, либо широкополосными. Для получения усредненных по времени характеристик звукового поля используют термическими приемниками звука в виде покрытых звукопоглощающим веществом термопар или термисторов[4]. Интенсивность и звуковое давление можно оценивать и оптическими методами, например по дифракции света на УЗ.