- •Содержание
- •1 Расчет коллекторного двигателя постоянного тока малой мощности
- •1.1 Задание на проект и исходные данные
- •1.4.1 Предварительное значение плотности тока в обмотки якоря.
- •1.4.2 Сечение и диаметр провода обмотки якоря
- •1.8.16 Уточненное значение напряженности магнитного поля постоянного магнита в рабочей точке.
- •1.8.17 Размагничивающее действие поля якоря
- •1.9.15 Кратность пускового момента
- •1.9.16 Электромеханическая постоянная времени электродвигателя
- •1.10 Тепловой расчет электродвигателя
- •Заключение
- •Список использованных источников
- •Введение
Введение
История развития электромашиностроения, начиная со времени открытия Фарадеем закона электромагнитной индукции (1831 г.) и до середины 80-х годов прошлого столетия, представляет по существу историю развития машин постоянного тока. За это время она прошла четыре этапа развития, а именно: 1) машины магнитоэлектрического типа с постоянными магнитами, 2) машины электромагнитного типа с независимым возбуждением, 3) машины того же типа с самовозбуждением и элементарным типом якоря и 4) машины много полюсного типа с усовершенствующим якорем.
Первый этап развития машины постоянного тока, охвативший время с 1831 по 1851 г., неразрывно связан с именами русских ученых Э.Х. Ленца и Б.С. Якоби.
Второй и третий этапы развития машины постоянного тока, охватывающий время с 1851 по 1871 г., характеризуется переходам к машинам электромагнитного типа, с начала с независимым возбуждением, а затем с самовозбуждением, а так же переход от двухполюсной машины к многополюсной.
На четвертом этапе своего развития - с 1871 по 1886 г. - машина постоянного тока приобрела все основные черты современной конструкции. Были предложены и осуществлены: машина с самовозбуждением Грамма, внедрившая в промышленность кольцевой якорь Пачинотти; нормальный в настоящее время тип барабанного якоря (Гефнер - Альтенек, 1871 г.); типы простых петлевых и волновых обмоток в их главных модификациях, последовательно - параллельных обмоток Арнольда, смешанные (лягушачьи) обмотки, уравнительные соединения обмоток (Мардей, 1883 г.,), добавочные полюсы для улучшения коммутации (Метер, 1885 г.) и компенсационные обмотки для компенсации реакции якоря (Менгес, 1884 г.), делитель напряжения М.О. Доливо-Добровольского.
Коллекторные двигатели постоянного тока с возбуждением постоянными магнитами мощностью до 200 Вт находят широкое применение в системах электроприводов систем автоматики, робототехники и транспортных средств. Двигатели разрабатываются на напряжение 6 - 110 В и частотой вращения 1500 - 6000 об/мин. Для двигателей постоянного тока рассматриваемого диапазона мощности с диаметром корпуса 20 - 80 мм целесообразно использовать конструкцию с радиально расположенными магнитами. При этом целесообразно применять волновую обмотку якоря, не требующую уравнительных соединений. Число полюсов рекомендуется выбирать в диапазоне 2р = 2 - 6.
Увеличение числа полюсов снижает размеры и массу ярма
статора и якоря, но увеличивает магнитные потоки рассеяния и
потери в стали из-за увеличения частоты перемагничивания. Пазы якоря
выбирают овальной или круглой формы, обеспечивающие постоянную
толщину зубца не менее 2 мм.
Применение постоянных магнитов с высокой удельной энергией типа феррит бария позволяет улучшить массогабаритные, энергетические и стоимостные показатели двигателя постоянного тока.
Приведена методика аналитического расчета коллекторного двигателя постоянного тока с возбуждением от феррит бариевых постоянных магнитов, позволяющая получить заданные технические параметры при лимитированном габарите и заданном тепловом режиме электродвигателя.
