Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Matematika_bilety.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
319.21 Кб
Скачать

Билет10. Действия над комплексными числами

  • Сравнение

 означает, что   и   (два комплексных числа равны между собой тогда и только тогда, когда равны их действительные и мнимые части).

  • Сложение

  • Вычитание

  • Умножение

  • Деление

Ко́мпле́ксные[1] чи́сла (устар. Мнимые числа[2]), — расширение поля вещественных чисел, обычно обозначается  . Любое комплексное число может быть представлено как формальная сумма  , где   и   — вещественные числа,   — мнимая единица[3].

Комплексные числа образуют алгебраически замкнутое поле — это означает, что многочлен степени   с комплексными коэффициентами имеет ровно   комплексных корней (основная теорема алгебры). Это одна из главных причин широкого применения комплексных чисел в математических исследованиях. Кроме того, применение комплексных чисел позволяет удобно и компактно сформулировать многие математические модели, применяемые в математической физике и в естественных науках — электротехникегидродинамикекартографии,квантовой механикетеории колебаний и многих других.

Билет11. Формула Эйлера утверждает, что для любого вещественного числа   выполнено следующее равенство:

,

где   — основание натурального логарифма,

 — мнимая единица.

Показательная функция — математическая функция  , где   называется основанием степени, а   — показателем степени.

Билет12. Пусть у нас есть множество из трех элементов  . Какими способами мы можем выбрать из этих элементов два?  .

Размещениями множества из   различных элементов по   элементов   называются комбинации, которые составлены из данных   элементов по   элементов и отличаются либо самими элементами, либо порядком элементов.

Перестановкой множества из   элементов называется расположение элементов в определенном порядке.

Так, все различные перестановки множества из трех элементов   — это

Сочетаниями из   различных элементов по   элементов называются комбинации, которые составлены из данных   элементов по   элементов и отличаются хотя бы одним элементом (иначе говоря,  -элементные подмножества данного множества из   элементов).

Как видим, в сочетаниях в отличие от размещений не учитывается порядок элементов. Число всех сочетаний из   элементов по   элементов в каждом обозначается   (от начальной буквы французского слова “combinasion”, что значит “сочетание”).

Билет13. Вероя́тность (вероятностная мера) — численная мера возможности наступления некоторого события.

С практической точки зрения, вероятность события— это отношение количества тех наблюдений, при которых рассматриваемое событие наступило, к общему количеству наблюдений. 

Теорема1: Вероятность суммы двух несовместных событий равна сумме вероятностей этих событий: Р(А+В)=Р(А)+Р(В).

Доказательство:

Число всех исходов N, число исходов благоприятствующих событию  А- К, событию В- L. Так как А и В несовместны, то ни  один из этих исходов не может благоприятствовать А и В одновременно, т.е. А и В взаимно исключающие, следовательно число благоприятствующих исходов для события А+В равно К+L. Тогда вероятность равна

  

Билет14. Теорема Байеса (или формула Байеса) — одна из основных теорем элементарной теории вероятностей, которая позволяет определить вероятность того, что произошло какое-либо событие (гипотеза) при наличии лишь косвенных тому подтверждений (данных), которые могут быть неточны. 

Формула Байеса:

,

где

 — априорная вероятность гипотезы A (смысл такой терминологии см. ниже);

 — вероятность гипотезы A при наступлении события B (апостериорная вероятность);

 — вероятность наступления события B при истинности гипотезы A;

 — полная вероятность наступления события B.

Билет15. Формула Бернулли — формула в теории вероятностей, позволяющая находить вероятность появления события A при независимых испытаниях. Формула Бернулли позволяет избавиться от большого числа вычислений — сложения и умножения вероятностей — при достаточно большом количестве испытаний.

Теорема: Если Вероятность p наступления события Α в каждом испытании постоянна, то вероятность   того, что событие A наступит k раз в n независимых испытаниях, равна:  , где  .

Билет16.  Случайной называется величина, которая в результате испытания может принять то или иное возможное значение, неизвестное заранее, но обязательно одно.

 Функцией распределения случайной величины Х называют функцию F(x), определяющую для каждого значения х, вероятность того, что случайная величина Х примет значение меньше х, т.е.      F(x) = P (X <x).      Иногда функцию F(x) называют интегральной функцией распределения.      Функция распределения обладает следующими свойствами:      1. Значение функции распределения принадлежит отрезку [0,1]: 0 ≤ F(x) ≤ 1.      2. Функции распределения есть неубывающая функция.      3. Вероятность того, что случайная величина Х примет значение, заключенное в интервале (аb), равна приращению функции распределения на этом интервале:       Р(а < X < b) = F(b) – F(а).                  

Билет17. Плотностью распределения вероятностей непрерывной случайной величины   называют функцию   — первую производную от функции распределения  :

Из этого определения следует, что функция распределения является первообразной для плотности распределения.

Билет18. Случайная величина - это величина, которая в результате испытания примет одно и только одно возможное значение, наперед неизвестное и зависящее от случайных причин, которые заранее не могут быть учтены.

Случайная величина бывает:

1)дискретной(дискретная случайная величина принимает конечное (или счетное) число возможных значений- xi (где i = 1.. n или i = 1 .. ∞) с определенными вероятностями.)

2)непрерывной(непрерывная случайная величина может принимать все значения из некоторого конечного или бесконечного промежутка. Число возможных значений непрерывной случайной величины, независимо от величины промежутка,бесконечно.)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]