
- •1.Какие из простейших электрических приборов применяются в физическом практикуме? Их назначение.
- •2.Генераторы сигналов низких и высоких частот. Применение.
- •3.Типы резисторов. Их назначение в электрической цепи
- •4.Разновидности диодов. Примеры использования.
- •5.Генераторы переменного тока. Их назначение
- •6. Источники питания. Виды.
- •9)Устройство и назначение гальванометров.
- •10)Назначение логометрических устройств
- •11)Лазерные устройства. Применение.
- •12)Атомно-силовые микроскопы. Принцип работы.
- •13)Принцип работы оптических микроскопов. Металлография.
- •14)Ускорители. Виды.
- •15)Приборы рентгеноструктурного и рентгеноспектрального анализа.
- •17)Каков физический смысл удельного сопротивления? Укажите единицу измерения удельного сопротивления. Как зависит удельное сопротивление (сопротивление) от температуры?
- •18)Метод магнетрона для определения удельного заряда электрона (e/m)? Почему при некотором значении тока через соленоид электроны не достигают анода?
- •19)В чем состоит явление термоэлектронной эмиссии? в работе каких известных Вам приборов используют это явление?
- •20)На чем основан принцип действия биполярного транзистора? Основные носители заряда в полупроводниках р и п типов.
- •21)Объясните механизм возникновения потенциального барьера на р-п переходе. Какими носителями обеспечивается ток р-п перехода в пропускном направлении?
- •22)Нарисуйте и объясните вольтамперные характеристики диода. Что такое ток насыщения и как он зависит от температуры?
- •23)Как устроен триод? Какое явление лежит в основе работы триодной лампы? Для чего служит сетка? Что называется работой выхода электрона?
- •24)Какие элементы электрической цепи имеют нелинейность вольтамперной характеристики? Динамическое и статическое сопротивление. Инерционность и безынерционность сопротивлений. Добротность.
- •25)Что такое индукция магнитного поля? самоиндукция? Какие методы измерения магнитной индукции Вы знаете? От чего зависит коэффициент взаимной индукции? Эффект Холла.
- •26)Чем обусловлен сдвиг фаз между током и напряжением в цепи? Почему при резонансе напряжений Ul и Uc могут быть больше общего напряжения?
- •27)Чем обусловлены магнитные свойства парамагнетиков, диамагнетиков, ферромагнетиков? в чем различие? и как это связано с магнитной проницаемостью?
- •28)Что вы понимаете под основной кривой намагничивания? под остаточной магнитной индукцией? Что характеризует площадь петли гистерезиса?
- •29)Объясните назначение различных элементов в схеме элт. Как осуществляется регулировка яркости и фокусировка луча?
- •30)Что такое развертка, ждущая развертка? Для чего служит синхронизация и в чем она заключается?
- •31) Принцип работы приборов электростатической системы измерения.
- •32) Сформулируйте закон Джоуля-Ленца. Физический смысл закона.
- •33) Принцип работы приборов магнитоэлектрической системы измерения.
- •34) Выведите формулу индукции магнитного поля бесконечно длинного соленоида.
- •35) Сформулируйте закон электромагнитной индукции Фарадея и правило Ленца.
- •36) Сформулируйте теорему о циркуляции вектора в по контуру l. Пользуясь теоремой, дайте вывод формулы для индукции магнитного поля бесконечного соленоида.
- •37,Сформулируйте закон Био-Савара-Лапласа. Пользуясь этим законом дайте вывод формулы для индукции магнитного поля на оси кругового витка с током
- •39, В чем заключается явление Холла? Дайте вывод формулы для эдс Холла?
- •41,Принцип работы ферродинамических приборов
- •44) Чему равно отношение значений магнитной индукции внутри бесконечно длинного соленоида и на срезе полубесконечного соленоида?
- •46.Изложите суть графического метода расчета нелинейных цепей. Какое нелинейное сопротивление называется инерционным и какое – безинерционным?
- •49) Принцип работы приборов электродинамической системы измерения.
- •51) В чем различие приборов магнитоэлектрической и электромагнитной системы?
- •53) Принцип работы индукционных приборов.
12)Атомно-силовые микроскопы. Принцип работы.
Атомно-силовой микроскоп — сканирующий зондовый микроскоп высокого разрешения. Используется для определения рельефа поверхности с разрешением от десятков ангстрем вплоть до атомарного. В отличие от сканирующего туннельного микроскопа, с помощью атомно-силового микроскопа можно исследовать как проводящие, так и непроводящие поверхности. Принцип работы атомно-силового микроскопа основан на регистрации силового взаимодействия между поверхностью исследуемого образца и зондом. В качестве зонда используется наноразмерное остриё, располагающееся на конце упругой консоли, называемой кантилевером. Сила, действующая на зонд со стороны поверхности, приводит к изгибу консоли. Появление возвышенностей или впадин под остриём приводит к изменению силы, действующей на зонд, а значит, и изменению величины изгиба кантилевера. Таким образом, регистрируя величину изгиба, можно сделать вывод о рельефе поверхности. Под силами, действующими между зондом и образцом, в первую очередь подразумевают дальнодействующие силы Ван-дер-Ваальса, которые сначала являются силами притяжения, а при дальнейшем сближении переходят в силы отталкивания. В зависимости от характера действия силы между кантилевером и поверхностью образца выделяют три режима работы атомно-силового микроскопа:
Контактный
«Полуконтактный»
Бесконтактный
13)Принцип работы оптических микроскопов. Металлография.
Микроскоп — оптический прибор для получения увеличенных изображений объектов (или деталей их структуры), невидимых невооружённым глазом. Оптическая система микроскопа состоит из основных элементов — объектива и окуляра. Они закреплены в подвижном тубусе, расположенном на металлическом основании, на котором имеется предметный столик. Увеличение оптического микроскопа без дополнительных линз между объективом и окуляром равно произведению их увеличений. В современном микроскопе практически всегда есть осветительная система (в частности, конденсор с ирисовой диафрагмой), макро- и микро- винты для настройки резкости, система управления положением конденсора. В зависимости от назначения, в специализированных микроскопах могут быть использованы дополнительные устройства и системы.
Металлография — направление в металловедении, классический метод исследования и контроля металлических материалов, подготовка и изучение строения структуры шлифа в оптическом микроскопе. Структуру выявляют с помощью травления, либо среза, шлифования и полирования образца. Металлографические исследования важны во многих областях промышленности:
Металлургия
Автомобилестроение
Атомная промышленность
Энергетика
Аэрокосмическая промышленность
Научно-исследовательские, изыскательские работы в различных исследовательских и научных центрах, университетах, лабораториях
14)Ускорители. Виды.
Ускоритель заряженных частиц — класс устройств для получения заряженных частиц (элементарных частиц, ионов) высоких энергий. Современные ускорители, подчас, являются огромными дорогостоящими комплексами, которые не может позволить себе даже крупное государство. К примеру, Большой адронный коллайдер в ЦЕРН представляет собой кольцо длиной почти 27 километров. В основе работы ускорителя заложено взаимодействие заряженных частиц с электрическим и магнитным полями. Электрическое поле способно напрямую совершать работу над частицей, то есть увеличивать её энергию. Магнитное же поле, создавая силу Лоренца, только отклоняет частицу, не изменяя её энергии, и задаёт орбиту, по которой движутся частицы. Конструктивно ускорители можно принципиально разделить на две большие группы. Это линейные ускорители, где пучок частиц однократно проходит ускоряющие промежутки, и циклические ускорители, в которых пучки движутся по замкнутым кривым (например, окружностям), проходя ускоряющие промежутки по многу раз. Можно также классифицировать ускорители по назначению: коллайдеры, источники нейтронов, бустеры, источники синхротронного излучения, установки для терапии рака, промышленные ускорители.