Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы с 60-70.docx
Скачиваний:
4
Добавлен:
01.03.2025
Размер:
377.23 Кб
Скачать

60. Уравнение прямой в е3 , проходящей через две данные точки.

Извините ничего не нашла.

61. Общее уравнение прямой в Е3 . Угол между двумя прямыми в Е3 . Условие перпендикулярности прямой и плоскости.

Если две прямые лежат в одной плоскости, угол между ними легко измерить — например, с помощью транспортира. А как измерить угол между прямой и плоскостью?

Пусть прямая пересекает плоскость, причем не под прямым, а под каким-то другим углом. Такая прямая называется наклонной.

Опустим перпендикуляр из какой-либо точки наклонной на нашу плоскость. Соединим основание перпендикуляра с точкой пересечения наклонной и плоскости. Мы получили проекцию наклонной на плоскость.

Угол между прямой и плоскостью — это угол между прямой и ее проекцией на данную плоскость.

Обратите внимание — в качестве угла между прямой и плоскостью мы выбираем острый угол.

Если прямая параллельна плоскости, значит, угол между прямой и плоскостью равен нулю.

Если прямая перпендикулярна плоскости, ее проекцией на плоскость окажется точка. Очевидно, в этом случае угол между прямой и плоскостью равен 90°.

Прямая перпендикулярна плоскости, если она перпендикулярна любой прямой, лежащей в этой плоскости.

Это определение. Но как же с ним работать? Как проверить, что данная прямая перпендикулярна всем прямым, лежащим в плоскости? Ведь их там бесконечно много.

На практике применяется признак перпендикулярности прямой и плоскости:

Прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым, лежащим в этой плоскости.

62. Угол между прямой и плоскостью. Условия параллельности и перпендикулярности прямых. Точка пересечения прямой и плоскости.

Рассмотрим прямую l с направляющим вектором а и плоскость р с нормальным вектором п. Обозначим через φ угол между прямой l и плоскостью р, а через ψ — угол между векторами а и n. Легко видеть, что φ  = 90° — ψ , если ψ < 90° (рис. 209, а) и φ = ψ — 90°, если ψ > 90° (рис. 209,6).

В обоих случаях справедливо равенство sin φ = | cos ψ) |.

По формуле (1) § 20 находим

и, следовательно,

Если известны прямоугольные декартовы координаты направляющего вектора прямой и нормального вектора плоскости a = (a1; a2; a3) и n = (А; В; С), то угол φ может быть вычислен с помощью формулы

        (1)

63. Поверхности второго порядка в е3 . Цилиндрические поверхности.

Поверхности второго порядка – это поверхности, которые в прямоугольной

системе координат определяются алгебраическими уравнениями второй степени.

1. Эллипсоид.

Эллипсоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением:

(1)

Уравнение (1) называется каноническим уравнением эллипсоида.

Установим геометрический вид эллипсоида. Для этого рассмотрим сечения данного

эллипсоида плоскостями, параллельными плоскости Oxy. Каждая из таких

плоскостей определяется уравнением вида z=h, где h – любое

число, а линия, которая получается в сечении, определяется двумя уравнениями

(2)

Исследуем уравнения (2) при различных значениях h.

1) Если >

c (c>0), то

и уравнения (2) определяют мнимый эллипс, т. е. точек пересечения плоскости

z=h с данным эллипсоидом не существует.

2) Если , то

и линия (2) вырождается в точки (0; 0; + c) и (0; 0; - c)

(плоскости

касаются эллипсоида).

3) Если , то уравнения (2) можно представить в виде

откуда следует, что плоскость z=h пересекает эллипсоид по эллипсу с

полуосями и

. При уменьшении

значения и

увеличиваются и достигают своих наибольших значений при

, т. е. в сечении эллипсоида координатной плоскостью Oxy получается

самый большой эллипс с полуосями

и .

Аналогичная картина получается и при пересечении данной поверхности плоскостями,

параллельными координатным плоскостям Oxz и Oyz.

Таким образом, рассмотренные сечения позволяют изобразить эллипсоид как

замкнутую овальную поверхность (рис. 156). Величины a, b, c называются

полуосями эллипсоида. В случае a=b=c эллипсоид является сферой.