Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ekonometrika_ZADAChI_nuzhnoe (1).doc
Скачиваний:
3
Добавлен:
01.03.2025
Размер:
2.84 Mб
Скачать

22.По 20 наблюдениям получены следующие данные:

Значения скорректированного коэффициента детерминации, частных коэффициентов эластичности и параметра равны:

+

По 16 наблюдениям получены следующие данные:

Значения скорректированного коэффициента детерминации, частных коэффициентов эластичности и параметра равны:

+

Уравнения регрессии y на и в стандартизованном и натуральном масштабе имеют вид:

+

.

Уравнения регрессии на и в стандартизованном и натуральном масштабе имеют вид:

+

;

.

Уравнения регрессии в стандартизированном и натуральном масштабе имеют вид:

+

.

Уравнения регрессии в стандартизированном и натуральном масштабе имеют вид:

+

.

Уравнения регрессии в стандартизированном и натуральном масштабе имеют вид:

+

.

Уравнения регрессии в стандартизированном и натуральном масштабе имеют вид:

+

Уравнение регрессии, построенное по 12 наблюдениям, имеет вид:

Пропущенные значения, а также доверительный интервал для с вероятностью 0,9 равны:

+

При построении регрессионной зависимости некоторого результативного признака на 8 факторов по 25 измерениям коэффициент детерминации составил 0,736. После исключения 3 факторов коэффициент детерминации уменьшился до 0,584. Обоснованно ли было принятое решение на уровнях значимости 0,1, 0,05 и 0,01:

+Да, только на уровнях 0,05 и 0,01

—Да, на всех уровнях значимости

—Нет, на всех уровнях значимости

—Да, только на уровне 0,01

—Да, только на уровнях 0,1 и 0,05

При построении регрессионной зависимости некоторого результативного признака на 7 факторов по 32 измерениям коэффициент детерминации составил 0,812. После исключения 2 факторов коэффициент детерминации уменьшился до 0,76. Обоснованно ли было принятое решение на уровнях значимости 0,1, 0,05 и 0,01:

+Да, только на уровнях 0,05 и 0,01

—Да, на всех уровнях значимости

—Нет, на всех уровнях значимости

—Да, только на уровне 0,01

—Да, только на уровнях 0,1 и 0,05

При построении регрессионной зависимости некоторого результативного признака на 10 факторов по 45 измерениям коэффициент детерминации составил 0,617. После исключения 3 факторов коэффициент детерминации уменьшился до 0,512. Обоснованно ли было принятое решение на уровнях значимости 0,1, 0,05 и 0,01:

+Да, только на уровне 0,01

—Да, на всех уровнях значимости

—Нет, на всех уровнях значимости

—Да, только на уровнях 0,05 и 0,01

—Да, только на уровнях 0,1 и 0,05

При построении регрессионной зависимости некоторого результативного признака на 10 факторов по 45 измерениям коэффициент детерминации составил 0,347. После добавления 3 факторов коэффициент детерминации увеличился до 0,536. Обоснованно ли было принятое решение на уровнях значимости 0,1, 0,05 и 0,01:

+Да, на всех уровнях значимости

—Нет, на всех уровнях значимости

—Да, только на уровнях 0,1 и 0,05

—Да, только на уровне 0,1

—Да, только на уровнях 0,05 и 0,01

При построении регрессионной зависимости некоторого результативного признака на 7 факторов по 42 измерениям коэффициент детерминации составил 0,443. После добавления 3 факторов коэффициент детерминации увеличился до 0,527. Обоснованно ли было принятое решение на уровнях значимости 0,1, 0,05 и 0,01:

+Нет, на всех уровнях значимости

—Да, на всех уровнях значимости

—Да, только на уровнях 0,1 и 0,05

—Да, только на уровне 0,1

—Да, только на уровнях 0,05 и 0,01

При построении регрессионной зависимости некоторого результативного признака на 8 факторов по 38 измерениям коэффициент детерминации составил 0,558. После добавления 2 факторов коэффициент детерминации увеличился до 0,644. Обоснованно ли было принятое решение на уровнях значимости 0,1, 0,05 и 0,01:

+Да, только на уровнях 0,1 и 0,05

—Да, на всех уровнях значимости

—Нет, на всех уровнях значимости

—Да, только на уровне 0,1

—Да, только на уровнях 0,05 и 0,01

По данным 150 наблюдений о доходе индивидуума Y, уровне его образования X1, и возрасте X2 определите, можно ли считать на уровне значимости 5 % линейную регрессионную модель Y на X1 и X2 гетероскедастичной, если суммы квадратов остатков после упорядочения данных по уровню образования следующие: RSS1 (для 50 значений с наименьшим уровнем образования) = 894,1; RSS2 (для 50 значений с наибольшим уровнем образования) = 3918,2:

+гипотеза об отсутствии гетероскедастичности отвергается

—гипотеза об отсутствии гетероскедастичности принимается

—на основе имеющихся данных такую гипотезу нельзя проверить

Имеется следующая модель, построенная на основе 30 наблюдений:

Y = 1, 48+ 0, 788X R2 = 0,97

(3,29) (29,37)

В скобках указаны t – статистики

Для проверки гетероскедастичности, были построены отдельные модели по первым 12 и последним 12 наблюдениям. Остаточные суммы квадратов отклонений составили RSS1 = 1069 и RSS2 = 3344 . Проверить гипотезу о гомоскедастичности с уровнем значимости 5%:

+гипотеза о гомоскедастичности отвергается

—гипотеза о гомоскедастичности принимается

—для проверки данной гипотезы в данной задаче недостаточно данных

Имеется следующая модель, построенная на основе 30 наблюдений:

Y = 1, 75+ 1, 251X R2 = 0,97

(3,02 ) (2,37)

В скобках указаны t – статистики

Для проверки гетероскедастичности, были построены отдельные модели по первым 12 и последним 12 наблюдениям. Остаточные суммы квадратов отклонений составили RSS1 = 344 и RSS2 = 769 . Проверить гипотезу о гомоскедастичности с уровнем значимости 5%:

—гипотеза о гомоскедастичности отвергается

+гипотеза о гомоскедастичности принимается

—для проверки данной гипотезы в данной задаче недостаточно данных

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]