
- •Предмет статистической науки. Статистические закономерности и совокупности.
- •Стадии экономико-статистического исследования.
- •Методы, используемые при выполнении основных стадий экономико-статистического исследования.
- •Понятие о статистической информации и статистическом наблюдении. Требования к статистическому наблюдению
- •5.Основные способы получения данных.
- •6.Выявление и устранение ошибок статистических исследований.
- •Задачи статистических группировок.
- •8.Типологические, структурные и аналитические группировки.
- •9.Группировочный признак. Образование групп и интервалов группировки.
- •10. Основные элементы статистического графика. Гистограмма. Полигон. Полигон интегральных процентов.
- •11.Организация числовых данных. Упорядоченный массив. Диаграмма «ствол и листья».
- •12.Представление категорийных данных в виде таблиц и диаграмм. Сводная таблица. Диаграмма Парето.
- •Абсолютные величины, их основные виды
- •14.Характеристика и общие принципы построения относительных величин.
- •Виды средних величин и методы их расчета.
- •16.Структурные средние величины.
- •17.Понятие вариации. Абсолютные и средние показатели вариации.
- •18.Показатели относительного рассеивания.
- •19.Виды дисперсии.
- •Анализ данных с помощью блочных диаграмм. Базовые показатели.
- •21.Дисперсия альтернативного (качественного признака).
- •Основная задача выборочного обследования.
- •22. Ошибка выборки
- •24.Определение оптимальной численности выборки.
- •25.Малая выборка.
- •26.Распространение характеристик выборки на генеральную совокупность.
- •27.Способы отбора единиц из генеральной совокупности.
- •Тема 9_2011-2012. Статистическое изучение динамики социально-экономических явлений
- •28.Понятие о статистических рядах динамики. Виды рядов динамики.
- •29.Аналитические показатели ряда динамики и их взаимосвязь.
- •3Средние показатели в рядах динамики.
- •31.Сглаживание рядов динамики. Скользящие средние.
- •32.Экспоненциальное сглаживание в рядах динамики.
- •33.Вычисление тренда с помощью метода аналитического выравнивания.
- •34.Прогнозирование в рядах динамики.
- •Компоненты классической мультипликативной модели рядов динамики.
- •36.Изучение сезонных изменений.
- •37.Агрегатные индексы.
- •38. Средние индексы.
- •40. Территориальные индексы.
24.Определение оптимальной численности выборки.
Размер ошибки выборки прежде всего зависит от численности выборочной совокупности n. При доведении N до n ошибка выборки =0. Однако это требует увеличения объемов исследований, дополнительных затрат труда и материальных средств.
Определение оптимальной численности выборки основывается на формуле предельной ошибки выборки. Необходимая численность выборки nх (для среднего значения) и n (для доли альтернативного признака) определяется как:
отсюда
(12)
отсюда
(13)
В случае бесповторного отбора величины (12) и (13) примут следующий вид:
(14)
(15)
25.Малая выборка.
Под малой выборкой (МВ) понимается несплошное статистическое обследование, при котором выборочная совокупность образуется из сравнительно небольшого числа единиц генеральной совокупности.
К минимальному объему выборки прибегают, когда большая выборка невозможна, или экономически невыгодна (если проведение исследования связано с порчей или уничтожением обследуемых образцов).
Объем малой выборки обычно не превышает 30 единиц, но м.б. до 4-5 единиц.
Первые работы в области теории малой выборки были выполнены английским статистиком В. Госсетом в 1908г. (псевдоним Стьюдент) и продолжены в исследованиях Р. Фишера.
Величина ошибки МВ определяется по формулам, отличным от формул выборочного наблюдения со сравнительно большим объемом выборки (n > 100). Средняя ошибка малой выборки исчисляется по формуле:
где
- дисперсия малой выборки. (16)
При МВ величина имеет существенной значение, поэтому вычисление дисперсии малой выборки проводится с учетом числа степеней свободы.
Число степеней свободы – это количество вариантов, которые могут принимать произвольные значения, не меняя величины средней.
При определении дисперсии число степеней свободы = n – 1,
Тогда дисперсия МВ находится по
формуле:
(17)
Предельная ошибка малой выборки: мв = t мв.
При этом для МВ t зависит не только от заданной доверительной вероятности, но и от численности единиц выборки n.
Для отдельных значений t и n доверительная вероятность МВ определяется по таблицам Стьюдента, в которых даны распределения стандартизованных отклонений:
(18)
При увеличении n распределение Стьюдента приближается к нормальному и при
n = 20 оно уже мало отличается от нормального распределения.
26.Распространение характеристик выборки на генеральную совокупность.
В зависимости от цели исследования применяются следующих два метода:
1) способ прямого пересчета показателей выборки для генеральной совокупности
2) посредством расчета поправочных коэффициентов.
При использовании способа прямого пересчета показатели выборочной доли или средней распространяются на генеральную совокупность с учетом ошибки выборки.
Практическое использование.
Определение в поступившей партии товара нестандартных изделий. Для этого (с учетом принятой степени вероятности) показатели доли нестандартных изделий в выборке умножаются на численность изделий во всей партии товара.
Проводится выборочное обследование поступившей партии хлебобулочных изделий в 2000ед. Количество нестандартных изделий в выборке 100 единиц равно 10.
Вычислена доля нестандартных изделий в выборке w = 10/100=0,1.
Для установленной вероятности = 0,954 подсчитана предельная ошибка выборки
.
Тогда доля нестандартных изделий во
всей партии составит
или от 0,04 до 0,16.
На основе этих данных численность нестандартных изделий во всей партии:
Минимальная = 2000*0,04=80шт.
Максимальная = 2000*0,16=320шт.
способ поправочных коэффициентов применяется, если целью выборочного метода является уточнение результатов сплошного учета:
Практическое использование.
Например, в отечественной практике этот метод используется при уточнении ежегодных переписей скота, находящегося у населения. Для этого после получения данных сплошного учета, практикуется 10%-ное выборочное обследование с определение т.н. «процента недоучета».
Если в хозяйствах поселка по данным 10% - й выборки зарегистрировано 52 головы скота, а по данным сплошного учета в этом массиве значится 50 голов, то коэффициент недоучета составляет 4% (2/50*100=4%)
С учетом полученного коэффициента вносится поправка в общую численность скота, находящегося у населения данного поселка.
Распространение выборочных данных на
генеральную совокупность производится
с учетом доверительных интервалов. Для
этого соответствующие обобщающие
показатели выборочной совокупности
и
корректируются величиной предельной
ошибки выборки ∆w
и
:
Для доли альтернативного признака:
Для средней величины количественного
признака: