
- •Два принципа спецификации эконометрических моделей и их формы
- •Типы уравнений в эмм: поведенческие уравнения и тождества (на примере макромодели).
- •Типы переменных в экономических моделях. Структурная и приведённая форма модели (на примере макромодели). Компактная запись. Типы переменных в экономических моделях.
- •Структурная и приведённая форма модели (на примере макромодели). Компактная запись.
- •Лаговые и предопределённые переменные динамической модели.
- •Модель Линтнера корректировки размера дивидендов.
- •Компактная запись.
- •Эконометрическая модель Самуэльсона–Хикса делового цикла экономики.
- •Порядок оценивания линейной эконометрической модели из изолированного уравнения в Excel. Смысл выходной статистической информации функции линейн.
- •Случайная переменная и закон её распределения. Нормальный закон распределения и его параметры.
- •Ожидаемое значение случайной переменной (сп), её дисперсия и среднеквадратическое отклонение.
- •Случайная переменная и закон её распределения. Распределение хи-квадрат.
- •Случайная переменная и закон её распределения. Распределение Стьюдента Квантиль, t крит уровня и её расчёт в Excel.
- •Ковариация Cov(X, y), и коэффициент корреляции, Cor(X, y) пары случайных переменных (X, y). Частная ковариация и частный коэффициент корреляции.
- •Свойства
- •Случайная переменная и закон её распределения. Закон распределения Фишера. Квантиль, f крит уровня и её расчёт в Excel.
- •Случайный вектор и его основные количественные характеристики (на примере вектора левых частей схемы Гаусса – Маркова при гомоскедастичном неавтокоррелированном остатке).
- •Временной ряд и его структура (На примере ввп России).
- •Модели тренда временного ряда.
- •Моделирование сезонной составляющей при помощи фиктивных переменных.
- •Регрессионная зависимость случайных переменных. Функция регрессии, стандартные модели функции регрессии.
- •Понятие статистической процедуры оценивания параметров эконометрической модели. Линейные стат. Процедуры. Требования к наилучшей стат. Процедуре.
- •Теорема Гаусса-Маркова – Эйткена. Вывод выражения .
- •Теорема Гаусса-Маркова – Эйткена. Вывод выражения Cov .
- •Теорема Гаусса-Маркова – Эйткена. Вывод свойства обобщенного метода наименьших квадратов (омнк),
- •Теорема Гаусса-Маркова – Эйткена. Вывод оценки дисперсии единицы веса, .
- •Следствие из теоремы Гаусса-Маркова – Эйткена: взвешенный метод наименьших квадратов (вмнк). Практическая реализация вмнк.
- •Следствие из теоремы Гаусса-Маркова – Эйткена: метод наименьших квадратов (мнк) или теорема Гаусса-Маркова
- •Система нормальных уравнений и явный вид её решения при оценивании методом наименьших квадратов (мнк) линейной модели парной регрессии (на примере модели Оукена).
- •Ковариационная матрица оценок коэффициентов линейной модели парной регрессии: явные выражения .
- •Свойства оценок Эйткена параметров линейной модели множественной регрессии (лммр) при нормальном векторе случайных остатков: независимость случайных векторов .
- •Свойства оценок Эйткена параметров линейной модели множественной регрессии (лммр) при нормальном векторе случайных остатков: распределение оценки .
- •Свойства оценок Эйткена параметров лммр при нормальном векторе случайных остатков: закон распределения дроби .
- •Оценивание параметров линейной модели множественной регрессии (лммр) при нормальном векторе случайных остатков методом максимального правдоподобия (ммп).
- •Оценивание нелинейных по коэффициентам моделей множественной регрессии методом Гаусса-Ньютона (на примере модели динамического ряда с экспоненциальной функцией тренда).
- •Спецификация и оценивание нелинейных по коэффициентам моделей множественной регрессии со специальными функциями регрессии (на примере производственной модели с функцией Кобба-Дугласа).
- •Оптимальное точечное прогнозирование значений эндогенной переменной по линейной модели (случай гомоскедастичного и неавтокоррелированного случайного остатка) на примере модели Оукена.
- •Тест Голдфелда-Квандта гомоскедастичности случайного остатка в лммр
- •Тест Дарбина–Уотсона отсутствия автокорреляции случайного остатка в лммр.
- •Коэффициент детерминации как мерило качества спецификации эконометрической модели (на примере модели Оукена). Скорректированный коэффициент детерминации.
- •Связь коэффициента детерминации с коэффициентом корреляции эндогенной переменной и её оценки.
- •Процедура интервального прогнозирования по оценённой линейной эконометрической модели значений эндогенной переменной (на примере модели Оукена).
- •Процедура проверки адекватности оценённой линейной эконометрической модели (на примере модели Оукена).
- •Последствия, симптомы и методика устранения ошибки спецификации эконометрической модели, состоящей в неверном выборе функции регрессии.
- •Последствия и симптомы ошибки спецификации линейной эконометрической модели, состоящей во включении незначимой объясняющей переменной.
- •Последствия и симптомы ошибки спецификации линейной эконометрической модели, состоящей в пропуске значимой объясняющей переменной.
- •Последствия и симптомы ошибки спецификации линейной эконометрической модели, состоящей в непостоянстве значений её параметров в области изменения объясняющих переменных; тест Чоу.
- •Основные характеристики временного ряда.
- •Стационарный временной ряд. Белый шум.
- •Оценка характеристик стационарного временного ряда.
- •Частная автокорреляционная функция стационарного временного ряда и алгоритм её оценивания.
- •Модель ar(p) и её идентификация.
- •Модель ma(q) и её идентификация.
- •Оптимальные алгоритмы прогнозирования уровней стационарного временного ряда.
- •Модели нестационарных временных рядов. Идентификация модели тренда.
- •Оценивание линейной модели с автокоррелированным остатком ar(1) алгоритмом Хильдретта – Лу.
- •Проблема, симптомы мультиколлинеарности. Методика отбора регрессоров в линейной модели в ситуации мультиколлинеарности.
- •Эконометрические модели в виде систем линейных одновременных уравнений (слоу): примеры и проблема идентификации (на примере модели спроса-предложения блага).
- •Эконометрические модели в виде систем линейных одновременных уравнений (слоу): примеры и проблема оценивания параметров структурной формы (на примере макромодели Кейнса).
- •Необходимое условие идентифицируемости поведенческого уравнения модели слоу (правило порядка). Сверхидентифицируемость параметров поведенческого уравнения.
- •Правило ранга.
- •Косвенный метод наименьших квадратов.
- •Двухшаговый метод наименьших квадратов.
Ожидаемое значение случайной переменной (сп), её дисперсия и среднеквадратическое отклонение.
В эконометрике важную роль играют две количественные хар-ки сл. перем. x: математическое ожидание (ожидаемое или среднее значение ) и дисперсия (средний квадрат разброса сл. знач. относительно математического ожидания). Средним квадратическим отклонением называют корень из дисперсии сл. перем. формулы по которым находятся данный количественные хар-ки приведены ниже:
,
,
Зачастую, нам неизвестен закон распределения сл. переменной, поэтому мы можем оценить данные хар-ки по рез-там n независимых наблюдений СП x.
,
Случайная переменная и закон её распределения. Распределение хи-квадрат.
Переменная величина называется случайной, если свои возможные значения она принимает в рез-те некоторого опыта, и до его завершения не возможно предсказать какое точно значение она примет.
З-н распределения дискретной случайной переменной- функция скалярного аргумента q с областью определения , характеризующая возможность появления в опыте значений q случайной переменной x.
З-н распределения дискретной случайной переменной называется вероятностной функцией, значение которой равны вероятностям появления в опыте возможного значения сл. переменной:
Закон распределения хи-квадрат случайной величины имеет вид(ХИ2РАСП,ХИ2ОБР):
,
,
где m-
кол-во степ.своб.
Случайная переменная и закон её распределения. Распределение Стьюдента Квантиль, t крит уровня и её расчёт в Excel.
Переменная величина называется случайной, если свои возможные значения она принимает в рез-те некоторого опыта, и до его завершения не возможно предсказать какое точно значение она примет.
З-н распределения дискретной случайной переменной- функция скалярного аргумента q с областью определения , характеризующая возможность появления в опыте значений q случайной переменной x.
З-н распределения дискретной случайной переменной называется вероятностной функцией, значение которой равны вероятностям появления в опыте возможного значения сл. переменной:
Закон распределения Стьюдента случайной величины имеет вид(СтьюдРАСП,СтьюдРаспОБР):
,
Г- гамма функция Эйлера, m- число степ.своб.
СтьюдРАСП-значение
з-на распределения. Для расчёта tкрит
используем ф-цию СтьюдРаспОБР( значение
аргумента з-на распределения), глее
вводим вероятность 1-
,
и кол-во степеней свободы.
Ковариация Cov(X, y), и коэффициент корреляции, Cor(X, y) пары случайных переменных (X, y). Частная ковариация и частный коэффициент корреляции.
Экономические переменные объекта (случайные или детерминированные), как правило, являются зависимыми величинами. Ковариации и коэффициент корреляции служат мерилами такой зависимости. Так, если (x, y) – пара случайных переменных (СП), то их ковариацией называется константа Cxy :
Cxy = Cov(x, y) = E(x · y) – E(x) · E(y). (1)
Свойства математического ожидания позволяют представить Cxy и так:
Cxy = E((x–mx) · (y–my)), где mx = E(x), my = E(y). (2)
Из формулы (1) видно, что для вычисления Cxy нужно знать закон распределения Pxy (q, r) пары
(x, y). Если он неизвестен, что и бывает на практике, то ковариацию можно оценить по выборке из генеральной совокупности Xx,y:
{(x1, y1), (x2, y2), ... (xn, yn)}, (3)
Оценкой ковариации служит величина
(4)
именуемая выборочной ковариацией. Каждая пара в выборке (3) имеет один и тот же закон распределения, Pxy (q, r); компонеты двух различных пар, например, (x1, y1) и (x2, y2) являются независимыми случайными переменными. Добавим, что случайные переменные (xi, xj) из выборки (3) обладают одинаковыми количественными характеристиками; аналогично, случайные переменных (yi,yj) имеют одинаковые количественные характеристики.
Оценка (4) совершеннее оценки (5) в том смысле, что она обладает свойством несмещённости,
(5)
отсутствующим у оценки, которая, в силу данного обстоятельства, является смещённой оценкой ковариации.
Наконец, отметим, что физическая размерность Cxy равна произведению физических размерностей СП x и y. Но часто удобно использовать безразмерную (нормированную) ковариацию xy ,
,
(6)
которая именуется коэффициентом корреляции. Замечательно, что всегда
–1 xy +1, (7)
причём
если |xy |
= 1, то y = a0 +
a1 ·
x. Так что при |xy |
= 1 между переменными (x, y) существует
функциональная (жесткая) линейная
зависимость. Если же
= 0, то связь между переменными x
и y
либо вообще отсутствует, либо же имеет
место функциональная (жесткая), но
нелинейная зависимость.