
- •Два принципа спецификации эконометрических моделей и их формы
- •Типы уравнений в эмм: поведенческие уравнения и тождества (на примере макромодели).
- •Типы переменных в экономических моделях. Структурная и приведённая форма модели (на примере макромодели). Компактная запись. Типы переменных в экономических моделях.
- •Структурная и приведённая форма модели (на примере макромодели). Компактная запись.
- •Лаговые и предопределённые переменные динамической модели.
- •Модель Линтнера корректировки размера дивидендов.
- •Компактная запись.
- •Эконометрическая модель Самуэльсона–Хикса делового цикла экономики.
- •Порядок оценивания линейной эконометрической модели из изолированного уравнения в Excel. Смысл выходной статистической информации функции линейн.
- •Случайная переменная и закон её распределения. Нормальный закон распределения и его параметры.
- •Ожидаемое значение случайной переменной (сп), её дисперсия и среднеквадратическое отклонение.
- •Случайная переменная и закон её распределения. Распределение хи-квадрат.
- •Случайная переменная и закон её распределения. Распределение Стьюдента Квантиль, t крит уровня и её расчёт в Excel.
- •Ковариация Cov(X, y), и коэффициент корреляции, Cor(X, y) пары случайных переменных (X, y). Частная ковариация и частный коэффициент корреляции.
- •Свойства
- •Случайная переменная и закон её распределения. Закон распределения Фишера. Квантиль, f крит уровня и её расчёт в Excel.
- •Случайный вектор и его основные количественные характеристики (на примере вектора левых частей схемы Гаусса – Маркова при гомоскедастичном неавтокоррелированном остатке).
- •Временной ряд и его структура (На примере ввп России).
- •Модели тренда временного ряда.
- •Моделирование сезонной составляющей при помощи фиктивных переменных.
- •Регрессионная зависимость случайных переменных. Функция регрессии, стандартные модели функции регрессии.
- •Понятие статистической процедуры оценивания параметров эконометрической модели. Линейные стат. Процедуры. Требования к наилучшей стат. Процедуре.
- •Теорема Гаусса-Маркова – Эйткена. Вывод выражения .
- •Теорема Гаусса-Маркова – Эйткена. Вывод выражения Cov .
- •Теорема Гаусса-Маркова – Эйткена. Вывод свойства обобщенного метода наименьших квадратов (омнк),
- •Теорема Гаусса-Маркова – Эйткена. Вывод оценки дисперсии единицы веса, .
- •Следствие из теоремы Гаусса-Маркова – Эйткена: взвешенный метод наименьших квадратов (вмнк). Практическая реализация вмнк.
- •Следствие из теоремы Гаусса-Маркова – Эйткена: метод наименьших квадратов (мнк) или теорема Гаусса-Маркова
- •Система нормальных уравнений и явный вид её решения при оценивании методом наименьших квадратов (мнк) линейной модели парной регрессии (на примере модели Оукена).
- •Ковариационная матрица оценок коэффициентов линейной модели парной регрессии: явные выражения .
- •Свойства оценок Эйткена параметров линейной модели множественной регрессии (лммр) при нормальном векторе случайных остатков: независимость случайных векторов .
- •Свойства оценок Эйткена параметров линейной модели множественной регрессии (лммр) при нормальном векторе случайных остатков: распределение оценки .
- •Свойства оценок Эйткена параметров лммр при нормальном векторе случайных остатков: закон распределения дроби .
- •Оценивание параметров линейной модели множественной регрессии (лммр) при нормальном векторе случайных остатков методом максимального правдоподобия (ммп).
- •Оценивание нелинейных по коэффициентам моделей множественной регрессии методом Гаусса-Ньютона (на примере модели динамического ряда с экспоненциальной функцией тренда).
- •Спецификация и оценивание нелинейных по коэффициентам моделей множественной регрессии со специальными функциями регрессии (на примере производственной модели с функцией Кобба-Дугласа).
- •Оптимальное точечное прогнозирование значений эндогенной переменной по линейной модели (случай гомоскедастичного и неавтокоррелированного случайного остатка) на примере модели Оукена.
- •Тест Голдфелда-Квандта гомоскедастичности случайного остатка в лммр
- •Тест Дарбина–Уотсона отсутствия автокорреляции случайного остатка в лммр.
- •Коэффициент детерминации как мерило качества спецификации эконометрической модели (на примере модели Оукена). Скорректированный коэффициент детерминации.
- •Связь коэффициента детерминации с коэффициентом корреляции эндогенной переменной и её оценки.
- •Процедура интервального прогнозирования по оценённой линейной эконометрической модели значений эндогенной переменной (на примере модели Оукена).
- •Процедура проверки адекватности оценённой линейной эконометрической модели (на примере модели Оукена).
- •Последствия, симптомы и методика устранения ошибки спецификации эконометрической модели, состоящей в неверном выборе функции регрессии.
- •Последствия и симптомы ошибки спецификации линейной эконометрической модели, состоящей во включении незначимой объясняющей переменной.
- •Последствия и симптомы ошибки спецификации линейной эконометрической модели, состоящей в пропуске значимой объясняющей переменной.
- •Последствия и симптомы ошибки спецификации линейной эконометрической модели, состоящей в непостоянстве значений её параметров в области изменения объясняющих переменных; тест Чоу.
- •Основные характеристики временного ряда.
- •Стационарный временной ряд. Белый шум.
- •Оценка характеристик стационарного временного ряда.
- •Частная автокорреляционная функция стационарного временного ряда и алгоритм её оценивания.
- •Модель ar(p) и её идентификация.
- •Модель ma(q) и её идентификация.
- •Оптимальные алгоритмы прогнозирования уровней стационарного временного ряда.
- •Модели нестационарных временных рядов. Идентификация модели тренда.
- •Оценивание линейной модели с автокоррелированным остатком ar(1) алгоритмом Хильдретта – Лу.
- •Проблема, симптомы мультиколлинеарности. Методика отбора регрессоров в линейной модели в ситуации мультиколлинеарности.
- •Эконометрические модели в виде систем линейных одновременных уравнений (слоу): примеры и проблема идентификации (на примере модели спроса-предложения блага).
- •Эконометрические модели в виде систем линейных одновременных уравнений (слоу): примеры и проблема оценивания параметров структурной формы (на примере макромодели Кейнса).
- •Необходимое условие идентифицируемости поведенческого уравнения модели слоу (правило порядка). Сверхидентифицируемость параметров поведенческого уравнения.
- •Правило ранга.
- •Косвенный метод наименьших квадратов.
- •Двухшаговый метод наименьших квадратов.
Косвенный метод наименьших квадратов.
Процедура применения КМНК предполагает выполнение следующих этапов работ:
структурная модель преобразовывается в приведенную форму модели;
для каждого уравнения приведенной формы модели обычным МНК оцениваются приведенные коэффициенты (δij);
коэффициенты приведенной формы модели трансформируются в параметры структурной модели.
Пример:
Приведенная форма модели, построенной на основе имеющихся данных, имеет вид:
где u1, u2 - случайные ошибки приведенной формы модели
Для каждого уравнения приведенной формы модели применяет традиционный МНК и определяем δ-коэффициенты. Для первого уровня приведенной формы модели система нормальных уравнений составит:
для
второго уровня:
Переходим
от приведенной к структурной форме
модели:
Алгоритм:
по структурной форме модели строится приведенная
определить МНК оценки параметров приведенной формы
по МНК оценкам приведенной формы определить оценки параметров структурной формы.
AM
= -B
; AM+B=0
;
=
(
B);
= 0;
=
0 (фигурная скобка со 2 уравнением)
iRiT=
0
aii
=
1
a22=1 a21=0 b22=0
Применяется в случае полной идентификации уравнения. Для сверхидентификации не применим.
Двухшаговый метод наименьших квадратов.
Основная идея ДМНК — на основе приведенной формы модели получить для сверхидентифицируемого уравнения теоретические значения эндогенных переменных, содержащихся в правой части уравнения. Далее, подставив их вместо фактических значений, можно применить обычный МНК к структурной форме сверхидентифицируемого уравнения. Метод получил название двухшагового МНК, ибо дважды используется МНК: на первом шаге при определении приведенной формы модели и нахождении на ее основе оценок теоретических значений эндогенной переменной:
ŷi=δi1x1 + δi2x2+…+ δijxj
и на втором шаге применительно к структурному сверхидентифицируемому уравнению при определении структурных коэффициентов модели по данным теоретических (расчетных) значений эндогенных переменных.
Сверхидентифицируемая структурная модель может быть двух типов:
все уравнения системы сверхидентифицируемы;
система содержит наряду со сверхидентифицируемыми точно идентифицируемые уравнения.
Если все уравнения системы сверхидентифицируемые, то для оценки структурных коэффициентов каждого уравнения используется ДМНК. Если в системе есть точно идентифицируемые уравнения, то структурные коэффициенты по ним находятся из системы приведенных уравнений.
Применим ДМНК к простейшей сверхидентифицируемой модели:
Данная модель может быть получена из предыдущей идентифицируемой модели:
если наложить ограничения на ее параметры, а именно: b12 =a11
В результате первое уравнение стало сверхидентифицируемым: Н=1 (у1), D=1(х2) и D+1 > Н. Второе уравнение не изменилось и является точно идентифицируемым: Н = 2 и D=1
На первом шаге найдем приведенную форму модели, а именно:
ДМНК является наиболее общим и широко распространенным методом решения системы одновременных уравнений.
Несмотря на важность системы эконометрических уравнений, на практике часто не принимают во внимание некоторые взаимосвязи, применение традиционного МНК к одному или нескольким уравнениям также широко распространено в эконометрике. В частности, при построении производственных функций анализ спроса можно вести, используя обычный МНК.