
- •Два принципа спецификации эконометрических моделей и их формы
- •Типы уравнений в эмм: поведенческие уравнения и тождества (на примере макромодели).
- •Типы переменных в экономических моделях. Структурная и приведённая форма модели (на примере макромодели). Компактная запись. Типы переменных в экономических моделях.
- •Структурная и приведённая форма модели (на примере макромодели). Компактная запись.
- •Лаговые и предопределённые переменные динамической модели.
- •Модель Линтнера корректировки размера дивидендов.
- •Компактная запись.
- •Эконометрическая модель Самуэльсона–Хикса делового цикла экономики.
- •Порядок оценивания линейной эконометрической модели из изолированного уравнения в Excel. Смысл выходной статистической информации функции линейн.
- •Случайная переменная и закон её распределения. Нормальный закон распределения и его параметры.
- •Ожидаемое значение случайной переменной (сп), её дисперсия и среднеквадратическое отклонение.
- •Случайная переменная и закон её распределения. Распределение хи-квадрат.
- •Случайная переменная и закон её распределения. Распределение Стьюдента Квантиль, t крит уровня и её расчёт в Excel.
- •Ковариация Cov(X, y), и коэффициент корреляции, Cor(X, y) пары случайных переменных (X, y). Частная ковариация и частный коэффициент корреляции.
- •Свойства
- •Случайная переменная и закон её распределения. Закон распределения Фишера. Квантиль, f крит уровня и её расчёт в Excel.
- •Случайный вектор и его основные количественные характеристики (на примере вектора левых частей схемы Гаусса – Маркова при гомоскедастичном неавтокоррелированном остатке).
- •Временной ряд и его структура (На примере ввп России).
- •Модели тренда временного ряда.
- •Моделирование сезонной составляющей при помощи фиктивных переменных.
- •Регрессионная зависимость случайных переменных. Функция регрессии, стандартные модели функции регрессии.
- •Понятие статистической процедуры оценивания параметров эконометрической модели. Линейные стат. Процедуры. Требования к наилучшей стат. Процедуре.
- •Теорема Гаусса-Маркова – Эйткена. Вывод выражения .
- •Теорема Гаусса-Маркова – Эйткена. Вывод выражения Cov .
- •Теорема Гаусса-Маркова – Эйткена. Вывод свойства обобщенного метода наименьших квадратов (омнк),
- •Теорема Гаусса-Маркова – Эйткена. Вывод оценки дисперсии единицы веса, .
- •Следствие из теоремы Гаусса-Маркова – Эйткена: взвешенный метод наименьших квадратов (вмнк). Практическая реализация вмнк.
- •Следствие из теоремы Гаусса-Маркова – Эйткена: метод наименьших квадратов (мнк) или теорема Гаусса-Маркова
- •Система нормальных уравнений и явный вид её решения при оценивании методом наименьших квадратов (мнк) линейной модели парной регрессии (на примере модели Оукена).
- •Ковариационная матрица оценок коэффициентов линейной модели парной регрессии: явные выражения .
- •Свойства оценок Эйткена параметров линейной модели множественной регрессии (лммр) при нормальном векторе случайных остатков: независимость случайных векторов .
- •Свойства оценок Эйткена параметров линейной модели множественной регрессии (лммр) при нормальном векторе случайных остатков: распределение оценки .
- •Свойства оценок Эйткена параметров лммр при нормальном векторе случайных остатков: закон распределения дроби .
- •Оценивание параметров линейной модели множественной регрессии (лммр) при нормальном векторе случайных остатков методом максимального правдоподобия (ммп).
- •Оценивание нелинейных по коэффициентам моделей множественной регрессии методом Гаусса-Ньютона (на примере модели динамического ряда с экспоненциальной функцией тренда).
- •Спецификация и оценивание нелинейных по коэффициентам моделей множественной регрессии со специальными функциями регрессии (на примере производственной модели с функцией Кобба-Дугласа).
- •Оптимальное точечное прогнозирование значений эндогенной переменной по линейной модели (случай гомоскедастичного и неавтокоррелированного случайного остатка) на примере модели Оукена.
- •Тест Голдфелда-Квандта гомоскедастичности случайного остатка в лммр
- •Тест Дарбина–Уотсона отсутствия автокорреляции случайного остатка в лммр.
- •Коэффициент детерминации как мерило качества спецификации эконометрической модели (на примере модели Оукена). Скорректированный коэффициент детерминации.
- •Связь коэффициента детерминации с коэффициентом корреляции эндогенной переменной и её оценки.
- •Процедура интервального прогнозирования по оценённой линейной эконометрической модели значений эндогенной переменной (на примере модели Оукена).
- •Процедура проверки адекватности оценённой линейной эконометрической модели (на примере модели Оукена).
- •Последствия, симптомы и методика устранения ошибки спецификации эконометрической модели, состоящей в неверном выборе функции регрессии.
- •Последствия и симптомы ошибки спецификации линейной эконометрической модели, состоящей во включении незначимой объясняющей переменной.
- •Последствия и симптомы ошибки спецификации линейной эконометрической модели, состоящей в пропуске значимой объясняющей переменной.
- •Последствия и симптомы ошибки спецификации линейной эконометрической модели, состоящей в непостоянстве значений её параметров в области изменения объясняющих переменных; тест Чоу.
- •Основные характеристики временного ряда.
- •Стационарный временной ряд. Белый шум.
- •Оценка характеристик стационарного временного ряда.
- •Частная автокорреляционная функция стационарного временного ряда и алгоритм её оценивания.
- •Модель ar(p) и её идентификация.
- •Модель ma(q) и её идентификация.
- •Оптимальные алгоритмы прогнозирования уровней стационарного временного ряда.
- •Модели нестационарных временных рядов. Идентификация модели тренда.
- •Оценивание линейной модели с автокоррелированным остатком ar(1) алгоритмом Хильдретта – Лу.
- •Проблема, симптомы мультиколлинеарности. Методика отбора регрессоров в линейной модели в ситуации мультиколлинеарности.
- •Эконометрические модели в виде систем линейных одновременных уравнений (слоу): примеры и проблема идентификации (на примере модели спроса-предложения блага).
- •Эконометрические модели в виде систем линейных одновременных уравнений (слоу): примеры и проблема оценивания параметров структурной формы (на примере макромодели Кейнса).
- •Необходимое условие идентифицируемости поведенческого уравнения модели слоу (правило порядка). Сверхидентифицируемость параметров поведенческого уравнения.
- •Правило ранга.
- •Косвенный метод наименьших квадратов.
- •Двухшаговый метод наименьших квадратов.
Эконометрические модели в виде систем линейных одновременных уравнений (слоу): примеры и проблема идентификации (на примере модели спроса-предложения блага).
Системы одновременных уравнений.
Эти модели описываются системами уравнений. Системы могут состоять из тождеств и регрессионных уравнений, каждое из которых, кроме объясняющих переменных, может включать в себя объясняемые переменные из других уравнений системы. Системы одновременных уравнений могут быть использованы для моделей национальной экономики.
Ярким примером системы одновременных уравнений служит модель спроса и предложения. Пусть QtD – спрос на товар в момент времени t, QtS -предложение товара в момент времени t, Рt – цена на товар в момент времени t, Yt - доход в момент t.
Составим систему уравнений "спрос - предложение":
QtS = α1 + α2 Рt +a3 Рt-1 + ξt (предложение),
QtD = β1 + β2 Рt + β3 Yt + ut (спрос),
QtS =QtD (равновесие).
Цена товара , Рt и спрос на товар Qt = QtD = QtS определяются из уравнений модели, то есть являются эндогенными переменными Объясняющими переменными в данной модели являются доход Yt и значение цены товара в предыдущий момент времени Рt-1.
Проблема идентификации для эконометрических моделей в виде системы одновременных уравнений.
При переходе от приведенной формы модели к структурной исследователь сталкивается с проблемой идентификации. Идентификации – это единственность соответствия между приведенной и структурной формами модели. Проблема идентификации существует только для системы одновременных уравнений.
Модель идентифицируема, если все структурные ее коэффициенты определяются однозначно, единственным образом по коэффициентам приведенной формы модели, т. е. если число параметром структурной модели равно числу параметров приведенной формы модели. В этом случае структурные коэффициенты модели оцениваются через параметры приведенной формы модели и модель идентифицируема.
Пример:
Модель неидентифицируема, если число приведенных коэффициентов меньше числа структурных коэффициентов, и в результате структурные коэффициенты не могут быть оценены через коэффициенты приведенной формы модели.
Пример
Модель содержит восемь структурных коэффициентов, что соответствует выражению n • (n— 1 + т).Структурная модель полном виде, содержащая п эндогенных и т предопределенных переменных в каждом уравнении системы, всегда неидентифицируема.
Эконометрические модели в виде систем линейных одновременных уравнений (слоу): примеры и проблема оценивания параметров структурной формы (на примере макромодели Кейнса).
Отдельные регрессионные уравнения системы в качестве предопределённых переменных могут включать как объясняющие переменные, та и объясняемые переменные из других уравнений. Такие системы называются системами одновременных уравнений.
Две проблемы: проблема идентифицируемости, проблема оценивания параметров уравнений.
Рассмотрим вторую проблему. Существо этой проблемы рассмотрим на примере модели Кейнса.
Данная модель имеет вид:
Запишем приведенную форму этой модели:
Рассматривая
эти уравнения, мы констатируем, что Y
является линейной функцией случайного
остатка U.
Поэтому значение Y
коррелирует со значением случайного
остатка(
).
Следовательно, в рамках модели Кейнса
оказывается нарушенной последняя
предпосылка теоремы ГМЭ. Можно показать,
что нарушение этой предпосылки порождает
несостоятельность оценок параметров
,
,
ни МНК, ни ВМНК, ни ОМНК.