
- •1.Литейное производство.
- •2. Формовоч. И стерж. Материалы
- •3. Литейно-технол.Оснастка
- •4. Изготовл.Лит.Форм на прессовых машинах.
- •5. Изготовл.Лит.Форм на встряхивающих машинах.
- •6.Изгот.Лит.Форм на пескодувных и пескострельных машинах.
- •7. Изготовл. Лит.Форм на пескометных машинах.
- •8. Литниковые системы. Её назначение и элементы.
- •9. Лит. Сплавы. Л. Св-ва Ме и сплавов.
- •10. Литье в оболочковые формы
- •11. Литьё по выплавляемым моделям.
- •12. Литьё в кокиль.
- •17. Требования в литейным сплавам.
- •8.Литейные св-ва металлов и сплавов.
- •19.Дефекты литья и способы их предупреждения.
- •25. Усадка сплавов и дефекты отливок, связанные с проявлением линейной и объемной усадки
- •26. Обработка Ме давлением
- •27. Закон постоянства объема
- •28. Напряженное и деформированное состояние при обработке давлением
- •29. Нагрев Ме перед обработкой
- •30. Нагревательные устройства
- •31. Прокатка Ме
- •32. Сортамент прокатки
- •33. Волочение
- •34. Свободная ковка
- •35. Прессование
- •39. Штамповка взрывом.
- •43. Горячая объемная штамповка на горизонтально-ковочных машинах.
- •44. Листовая штамповка. Разделительные операции.
- •59.Сварка в среде аргона.
- •60.Сварку в углекислом газе
- •61. Плазменно-дуговая сварка.
- •62.Электрошлаковая сварка.
- •63.Электроннолучевая сварка.
- •64. Лазерная сварка.
- •65.Точечная электрическая контактная сварка.
- •66.Шовная (роликовая) сварка.
- •67.Высокочастотная сварка.
- •68.Диффузионная сварка в вакууме.
- •69.Сварка трением.
- •70. Ультрозвуковая сварка.
- •71. Холодная сварка.
- •72.Зависимость вольтамперной характеристики дуги от ее длины. Выбор рабочей точки источника питания сварочной дуги.
- •75. Сварка аккумулированной энергией.
- •48. Деформация. Упруг и пластич.
- •20.Способы удаления моделей из литейных форм.
59.Сварка в среде аргона.
Аргонодуговой сваркой можно сварить неплавящимся и плавящимся электродами. Сварку неплавящимся электродом применяют при соединении металла толщиной 0.5-6 мм; плавящимся электродом — от 1.5 мм и более.
Сварку неплавящимся электродом ведут на постоянном токе прямой полярности. В этом случае дуга легко зажигается и горит устойчиво при напряжении 10-15В. При обратной полярности возрастает напряжение дуги, уменьшается устойчивость ее горения и снижается стойкость электрода. Эти особенности дуги обратной полярности делают ее непригодной для непосредственного применения в сварочном процессе. Однако дуга обратной полярности обладает одним важным технологическим св-вом: при ее действии с поверхности свариваемого металла удаляются оксиды.
При сварке неплавящимся электродом на переменном токе сочетаются преимущества дуги на прямой и обратной полярностях. Для питания дуги в аргоне переменным током применяют специальные источники тока.
Нормальное протекание процесса сварки в аргоне и хорошее качество шва обеспечиваются при высокой плотности тока (100А/мм2 и более). При невысокой плотности тока имеет место крупнокапельный перенос расплавленного Ме с электрода в сварочную ванну, приводящий к пористости шва, сильному разбрызгиванию расплавленного Ме и малому проплавлению основного Ме. При высоких плоскостях тока перенос расплавленного Ме с электрода становится мелкокапельным или струйным. В условиях действия значительных электромагнитных сил быстродвижущиеся мелкие капли сливаются в сплошную струю. Такой перенос электродного Ме обеспечивает глубокое проплавление основного Ме, формирование плотного шва с ровной и чистой поверхностью разбрызгивание в допустимых пределах.
Сварку сталей часто выполняют в смеси Аr+5%О2. Кислород уменьшает поверхностное натяжение расплавленного Ме, что способствует снижению критической плотности тока, при которой капельный перенос Ме переходит в струйный. Одновременно повышается устойчивость горения дуги при относительно небольших токах, что облегчает сварку Ме малой толщины.
60.Сварку в углекислом газе
выполняют только плавящимся электродом на повышенных плотностях постоянного тока обратной полярности. Такой режим обусловлен теми же особенностями переноса электродного металла и формирования шва, которые рассмотрены для сварки плавящимся электродом в аргоне.
При применении СО2 в качестве защитного газа необходимо учитывать некоторые металлургические особенности процесса сварки, связанные с окислительным действием СО2. При высоких температурах сварочной дуги СО2 диссоциирует на оксид углерода СО и кислород О, который, если не принять специальных мер, приводит к окислению свариваемого металла и легирующих элементов. Окислительное действие О нейтрализуется введением в проволоку дополнительного количества раскислителей марганца и кремния. Поэтому для сварки в СО2 углеродистых и низколегированных сталей применяют сварочную проволоку с повышенным содержанием этих элементов. На поверхности шва образуется тонкая шлаковая корка из оксидов раскислителей. Часто применяют смесь СО2+10%О2. Кислород играет ту же роль, что и при добавке в аргон.
Сварка в атмосфере защитных газов в зависимости от степени механизации процессов подачи присадочной или сварочной проволоки и перемещения сварочной горелки может быть ручной, полуавтоматической и автоматической.
По сравнению с ручной сваркой покрытыми электродами и автоматической под флюсом сварка в защитных газах имеет следующие преимущества: высокую степень защиты расплавленного металла от воздействия воздуха; отсутствие на поверхности шва при применении аргона оксидов и шлаковых включений; возможность ведения процесса во всех пространственных положениях; возможность визуального наблюдения за процессом формирования шва и его регулирования; более высокую производительность процесса, чем при ручной дуговой сварке; относительно низкую стоимость сварки в углекислом газе.
Области применения сварки в защитных газах охватывают широкий круг материалов и изделий.
В углекислом газе сваривают конструкции из углеродистой и низколегированной сталей. Преимущество полуавтоматической сварки в СО2 с точки зрения ее стоимости и производительности часто приводит к замене ею ручной дуговой сварки покрытыми электродами.