
- •Вопросы к зачету по биологии
- •3. Происхождение и эволюция живой материи
- •3.1. Гипотезы происхождения жизни на Земле.
- •3.2. Возникновение генетического кода. Коацерваты и пробионты. Дальнейшее развитие жизни.
- •3.3. Основные этапы биологической эволюции: эволюция растений. Хронология появления основных ароморфозов.
- •3.4. Основные этапы биологической эволюции: эволюция животных. Хронология появления основных ароморфозов.
- •3.5. Эволюционные идеи в додарвиновский период.
- •3.6. Теория Дарвина, ее характеристика и значение. Понятие о движущих силах эволюции.
- •3.7. Прогресс и регресс в биологии. Пути достижения биологического прогресса.
- •. Современное понимание механизмов эволюции органического мира.
- •Биологические методы исследования эволюционных процессов.
- •Человек как биологический вид.
- •Этапы антропогенеза.
- •4. Основы экологии.
- •4.1. Экологические факторы (биотические, абиотические).
- •4.2. Закономерности влияния экологических факторов на организмы. Понятие лимитирующего фактора.
- •4.3. Биохимические, морфо-физиологические и поведенческие адаптации живых организмов.
- •4.4. Биологический вид: определение, критерии.
- •Генетический критерий - это характерный для каждого вида набор хромосом, строго определенное их число, размеры и форма.
- •4.5. Популяция – структурная единица вида. Характеристика популяций: численность, плотность, пространственное распределение.
- •4.6. Половая, возрастная, генетическая, экологическая и этологическая структура популяции.
- •4.7. Динамика популяции и ее причины.
- •4.8. Состав и структура экосистем.
- •4.9. Движение вещества и энергии в экосистеме. Цепи и сети питания. Экологические пирамиды. Продуктивность биогеоценозов.
- •4.10. Динамика экосистем. Сукцессии, саморегуляция экосистем. Антропогенные экосистемы.
- •4.11. Типы межвидовых отношений.
- •4.12. Основные законы экологии.
- •4.13. Учение Вернадского в.И. О биосфере. Распределение живого вещества в биосфере.
- •4.14. Главные функции живого вещества в биосфере.
- •4.15. Круговорот веществ и поток энергии в биосфере.
- •4.16. Эволюция биосферы. Представления о ноосфере. Место человека в эволюции Земли.
- •4.17. Антропогенное воздействие на природу и экологические проблемы.
- •4.18. Пути решения экологических проблем. Рациональное природопользование, сохранение генофонда. Экологический мониторинг и его значение.
- •4.19. Биотехнология как область науки и практики. Основные направления биотехнологии и их краткая характеристика. Значение биотехнологии в медицине, селекции и охране окружающей среды.
3.2. Возникновение генетического кода. Коацерваты и пробионты. Дальнейшее развитие жизни.
Наибольшее признание и распространение в XX столетии получила гипотеза происхождения жизни на Земле, предложенная известным отечественным биохимиком академиком А. И. Опариным (1894-1980) и английским биохимиком Дж. Холдёйном (1892-1964). Суть их гипотезы, сформулированной ими независимо друг от друга в 1924-1928 гг. и развиваемой в последующее время, сводится к существованию на Земле продолжительного периода абиогенного образования большого числа органических соединений. Данные органические вещества насыщали воды древнейших океанов, сформировав (по представлениям Дж. Холдейна) так называемый «первичный бульон». Впоследствии в силу многочисленных процессов локальных обмелений и иссушений океанов концентрация «первичного бульона» могла возрастать в десятки и сотни раз. Эти процессы происходили на фоне интенсивной вулканической активности, частых грозовых разрядов в атмосфере и мощного космического излучения. В этих условиях могло происходить постепенное усложнение молекул органических веществ, появление простых белков, полисахаридов, липидов, нуклеиновых кислот. На протяжении многих сотен и тысяч лет они могли образовать сгустки органических веществ (коацерваты). В условиях восстановительной атмосферы Земли коацерваты не разрушались, происходило их постепенное усложнение, и в определенный момент развития из них могли образоваться первые примитивные организмы (пробионты). Эта гипотеза была принята и развита в дальнейшем многими учеными разных стран, ив 1947 г. английский ученый Джон Бернал сформулировал гипотезу биопоэза. Он выделил три основные стадии формирования жизни:
1) абиогенное возникновение органических мономеров;
2) формирование биологических полимеров;
3) развитие мембранных структур и первых организмов.
Этап полимеризации органических мономеров.
Значительная часть образующихся мономеров разрушалась под действием высоких температур и многочисленных химических реакций, происходивших в «первичном бульоне». Летучие соединения переходили в атмосферу и практически исчезали из водоемов. Периодическое подсыхание водоемов приводило к многократному увеличению концентрации растворенных органических соединений. На фоне высокой химической активности среды происходили процессы усложнения этих соединений, и они могли вступать в соединения друг с другом (реакции конденсации, полимеризации и т. п.). Жирные кислоты, соединяясь со спиртами, могли образовывать липиды и формировать жировые пленки на поверхности водоемов. Аминокислоты могли соединяться друг с другом, образуя все более сложные пептиды. Могли образовываться и другие типы соединений — нуклеиновые кислоты, полисахариды и др. Первыми нуклеиновыми кислотами, как полагают современные биохимики, были небольшие цепи РНК, так как они, как и олигопептиды, могли синтезироваться в среде с высоким содержанием минеральных компонентов спонтанно, без участия ферментов. Реакции полимеризации могли заметно активироваться при значительном увеличении концентрации раствора (пересыхание водоема) и даже во влажном песке или при полном высыхании водоемов (возможность протекания таких реакций в сухом состоянии была показана американским биохимиком С. Фоксом). Последующие дожди растворяли молекулы, синтезированные на суше, и перемещали их с токами воды в водоемы. Такие процессы могли носить циклический характер, приводя к еще большему усложнению органических полимеров.
Формирование коацерватов.
Следующим этапом в происхождении жизни стало образовывание коацерватов, то есть больших скоплений сложных органических полимеров. Причины и механизмы этого явления во многом еще не ясны. Коацерваты этого периода представляли еще механическую смесь органических соединений, лишенную каких-либо признаков жизни. В какой-то период времени между молекулами РНК и пептидами возникли связи, напоминающие реакции матричного синтеза белка. Однако до сих пор непонятно, каким образом РНК стала кодировать синтез пептидов. Позже появились молекулы ДНК, которые в силу наличия двух спиралей и возможности к более точному (по сравнению с РНК) самокопированию (репликации) стали главными носителями информации о синтезе пептидов, передавая эту информацию на РНК. Такие системы (коацерваты) уже напоминали живые организмы, однако еще не являлись таковыми, так как не имели упорядоченной внутренней структуры, присущей живым организмам, и не были способны размножаться. Ведь определенные реакции синтеза пептидов могут происходить и в неклеточных гомогенатах.
Появление биологических мембран.
Упорядоченные биологические структуры невозможны без биологических мембран. Поэтому следующим этапом в образовании жизни стало формирование именно этих структур, изолирующих и защищающих коацерваты от окружающей среды, превращающих их в автономные образования. Мембраны могли образоваться из липидных пленок, появлявшихся на поверхности водоемов. К молекулам липидов могли присоединяться пептиды, приносимые дождевыми потоками в водоемы или образовавшиеся в этих водоемах. При волнении водоемов или выпадении на их поверхность осадков могли возникать пузырьки, окруженные мембраноподобными соединениями. Для возникновения и эволюции жизни важны были те пузырьки, которые окружали коацерваты с белково-нуклеидными комплексами. Но и такие образования еще не были живыми организмами.
Возникновение пробионтов — первых самовоспроизводящихся организмов.
В живые организмы могли превратиться только те коацерваты, которые были способны к саморегуляции и самовоспроизводству. Каким образом эти способности возникли — также пока неясно. Биологические мембраны обеспечили автономность и защиту коацерватам, что способствовало появлению существенной упорядоченности биохимических реакций, протекающих в этих телах. Следующим шагом стало появление самовоспроизводства, когда нуклеиновые кислоты (ДНК и/или РНК) стали не только обеспечивать синтез пептидов, но и с его помощью регулировать процессы самовоспроизводства и обмена веществ. Так возникла клеточная структура, обладающая обменом веществ и способностью к самовоспроизводству. Именно эти формы и смогли сохраниться в процессе естественного отбора. Так коацерваты превратились в первые живые организмы — пробионты.
Закончился этап химической эволюции, и наступил этап биологической эволюции уже живой материи. Произошло это 3,5-3,8 млрд. лет назад. Появление живой клетки — это первый крупнейший ароморфоз в эволюции органического мира. Первые живые организмы были близки по строению к прокариотам, не имели еще прочной клеточной стенки и каких-то внутриклеточных структур (были покрыты биологической мембраной, внутренние изгибы которой выполняли функции клеточных структур). Возможно, первые пробионты имели наследственный материал, представленный РНК, а геномы с ДНК появились позже в процессе эволюции. Существует мнение, что дальнейшая эволюция жизни пошла от общего предка, от которого произошли первые прокариоты. Именно это обеспечило большое сходство строения всех прокариот, а впоследствии и эукариот.