Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Voprosy_i_otvety_MPT.doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
3.94 Mб
Скачать

14. Последовательные асинхронные интерфейсы: rs-232, rs-422, rs-485, ирпс (интерфейс радиальный последовательный). Назначение, форматы передачи данных, основные технические характеристики.

RS-232 – это название стандарта (RS – recommended standard – рекомендуемый стандарт, 232 – его номер), который был разработан в 60-х годах прошлого века для подключения к компьютеру внешних устройств (принтера, сканера, мыши и др.), а также связи компьютеров между собой. Интерфейс RS-232 разрабатывался для соединения оборудования (устройств) двух видов: терминального и связного. Терминальное оборудование (DTE – Data Terminal Equipment), например, компьютер может посылать или принимать данные по последовательному интерфейсу. Оно как бы оканчивает (terminate) последовательную линию. Связное оборудование (DCE – Data Communication Equipment) понимается как устройство, которое может практически реализовать последовательную передачу данных. Наиболее часто в качестве DCE используется модем, организующий обмен информацией с использованием телефонных линий связи. Возможно также соединение двух DTE-устройств, например, компьютеров непосредственно с помощью интерфейса RS-232 без использования модемов. Стандарт RS-232 описывает виды и параметры сигналов, способы их передачи, типы разъемов.

Разъемы RS-232. Стандарт регламентирует типы применяемых разъемов, что обеспечивает высокий уровень совместимости аппаратуры различных производителей. Применяются 25-контактный разъем DB-25 или более компактный 9-контактный вариант DB-9.

Сигналы RS-232. Стандарт предусматривает асинхронный и синхронный режимы обмена, но в настоящее время практически используется только асинхронный, тем более, что COM-порты поддерживают только асинхронный режим. В интерфейсе имеются две линии сигналов последовательных данных: TxD – передаваемые и RxD – принимаемые, а также несколько линий сигналов управления: RTS и CTS – первая пара квитирования, DTR и DSR – вторая пара квитирования, DCD и RI – сигналы состояния модема. Имеется общий провод SG - сигнальное заземление и линия PG – защитное заземление (корпус).

В интерфейсе используется небалансный метод передачи сигналов с несимметричными передатчиками и приемниками. Соединение передатчика и приемника приведено на рис. 14.1, где приняты следующие условные обозначения: T (Transmitter) – передатчик; R (Receiver) – приемник; TI (Transmitter Input) – цифровой вход передатчика; RO (Receiver Output) – цифровой выход приемника; UT – линейное напряжения на выходе передатчика и UR – на входе приемника.

Рис. 14.1. Соединение передатчика и приемника в интерфейсе RS-232

Каждый сигнал, который передается по линиям, появляется на интерфейсном разъеме как напряжение относительно общего провода (сигнальной земли SG). Уровни сигналов на выходах передатчиков должны быть в диапазоне от -15 до -5 В для представления логической 1 и в диапазоне от +5 до +15 В для представления логического 0. Хотя по стандарту RS-232 максимальное напряжение логических уровней сигналов на выходе передатчиков может быть ±15 В, а на входах приемников даже ±25 В, на практике оно не превышает величин ±12 В. Это объясняется тем, что коммуникационные COM-порты персональных компьютеров используют стандартное двухполярное напряжение ±12 В от собственного блока питания.

Форматы передачи данных. В интерфейсе RS-232 используется асинхронный метод передачи последовательных данных. В отсутствие передачи сообщений линии данных находятся в состоянии логической 1 (напряжение на контактах TxD и RxD равно -12 В). Сообщения передаются кадрами. Каждый кадр состоит из стартового бита, битов данных, бита паритета и стоповых битов. Старт-бит всегда имеет уровень логического 0. Количество битов данных по стандарту может быть 5, 6, 7 и 8. Чаще всего используются 8 или 7 битов (семибитный формат применяется для передачи символов в коде ASCII). Количество стоп-битов: 1 или 2. Стоповые биты всегда имеют уровень логической 1. В кадре может быть необязательный контрольный бит паритета – проверки на четность или нечетность. Биты данных передаются, начиная с младшего. Скорость передачи в RS-232 может выбираться из ряда: 110, 150, 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200 бит/с. Очень важно, чтобы тактовые частоты приемника и передатчика были одинаковы (допустимое расхождение – не более 10%). Синхронизация генератора приемника осуществляется в момент поступления старт-бита из линии связи от передатчика.

Для преобразования параллельных данных в последовательные и наоборот, а также формирования служебных битов для асинхронной передачи, устройства, подключаемые к интерфейсу RS-232, должны иметь модуль универсального асинхронного приемопередатчика UART. Этот модуль работает, как правило, с сигналами ТТЛ-уровней. Для преобразования этих сигналов в уровни интерфейса RS-232 и наоборот используются специальные микросхемы преобразователей уровней, называемые передатчиками и приемниками.

Соединение устройств интерфейса. Стандарт RS-232 предполагает непосредственное соединение контактов разъемов устройств DTE и DCE. Если аппаратура DTE, например, два компьютера подключаются без модемов, то их разъемы соединяются между собой нуль-модемным кабелем, который обеспечивает перекрестное соединение контактов входов и выходов устройств. При этом возможно несколько вариантов подключения. На рис. 14.2,а приведено соединение с полным протоколом квитирования. Оно требует 7 проводов кабеля. На рис. 14.2,б приведен пример нуль-модемного соединения, которое требует только трех проводов кабеля для дуплексного (двустороннего) обмена данными. В этой схеме соединения не используются линии для передачи управляющих сигналов. Для того, чтобы устройства могли передавать данные по интерфейсу, их выходы RTS соединяются со своими входами CTS, а выходы DTR – со своими входами DSR и DCD. Таким образом, оба устройства DTE-1 и DTE-2 всегда будут готовы к передаче. Практически это обстоятельство может привести к потере передаваемых данных из-за неготовности принимающего устройства. Поэтому необходимы специальные методы для управления передачей данных или, по-другому, управления потоком данных.

Рис. 14.2. Соединение компьютеров нуль-модемным кабелем:

а) - с полным протоколом квитирования; б) - без сигналов квитирования

Управление потоком данных означает возможность остановить, а после этого возобновить передачу данных без их потери. Могут использоваться два варианта протокола: аппаратный и программный.

Аппаратный протокол управления потоком обычно использует пару сигналов квитирования RTS/CTS. При этом контакт RTS разъема одного устройства соединяется с контактом CTS разъема другого устройства. На рис. 14.3,а приведена схема подключения устройства DTE-1 (например, компьютера) к устройству DTE-2 (например, принтеру или контроллеру) при односторонней передаче.

Когда приемник (DTE-2) готов к приему, он устанавливает сигнал на контакте своего разъема RTS. Передатчик (DTE-1), получив этот сигнал на контакте CTS своего разъема, передает очередной байт данных. Если сигнал CTS на разъеме передатчика будет сброшен, то он прекращает передачу. Сообщение, которое уже начало передаваться, задержать сигналом CTS невозможно (это гарантирует целостность посылки). Если необходима двусторонняя передача (дуплексный обмен), то аппаратный протокол требует перекрестного соединения линий RTS и CTS, как показано на рис. 14.3,б.

В некоторых случаях для управления потоком данных используется пара квитирования DTR/DSR. Принцип ее применения аналогичен рассмотренному для пары RTS/CTS.

Программный протокол управления потоком заключается в посылке принимающей стороной специальных символов останова передачи XOFF (обычно код 13h) и возобновления передачи XON (код 11h). При этом предполагается наличие двунаправленного канала обмена данными. Работу этого протокола можно описать следующим образом. Передающее устройство посылает данные на контакт своего разъема TxD, а приемное принимает их с контакта RxD своего разъема. Если приемное устройство не может принимать данные, то оно посылает на линию связи (контакт TxD) байт-символ XOFF. Передатчик, приняв этот символ с контакта RxD, останавливает передачу. Затем, когда принимающее устройство снова становится готовым к приему данных, оно посылает байт-символ XON. Приняв его, передающее устройство возобновляет передачу. Преимущество программного протокола заключается в отсутствии необходимости передачи управляющих сигналов интерфейса – минимальный кабель для двустороннего обмена может иметь только 3 провода (см. рис. 14.2,б).

Рис. 14.3. Соединение двух DTE с аппаратным протоколом управления потоком RTS/CTS: а) - при односторонней передаче; б) - при двусторонней передаче

Длина соединительного кабеля. Длина кабеля влияет на максимальную скорость передачи информации. Стандарт RS-232 определяет максимальную длину стандартного кабеля 15 метров при скорости передачи 19200 бит/с. При уменьшении скорости передачи длина кабеля может быть существенно увеличена. Например, при скорости 2400 бит/с длина кабеля может достигать 300 м. В то же время, для максимальной скорости передачи 115000 бит/с длина кабеля не должна превышать 5 м.

Достоинства интерфейса RS-232: большой парк работающего оборудования, использующего этот стандарт; простота и дешевизна соединительного кабеля; простота и доступность программного обеспечения для работы с интерфейсом.

Недостатки интерфейса: невысокая скорость обмена; малая длина соединительного кабеля; невысокая помехоустойчивость; интерфейс предназначен для соединения, как правило, только двух устройств (передатчика и приемника).

В интерфейсах RS-422 и RS-485 устранены недостатки интерфейса RS-232, который широко используется в персональных компьютерах. В основе построения интерфейсов RS-422/RS-485 лежит принцип дифференциальной (балансной) передачи данных. Суть его заключается в передаче одного сигнала по двум проводам, скрученных между собой и образующих витую пару. Обычно один провод условно именуют как ‘A’, а другой – ‘B’. Полезным сигналом является разность потенциалов между проводами A и B: UA – UB = UAB. Для организации интерфейсов необходимы линейные передатчики с дифференциальными выходами и линейные приемники с дифференциальными входами.

На рис. 14.4 приведено условное изображение линейного передатчика интерфейсов RS-422/RS-485 и временная диаграмма его выходного сигнала. Передатчик выдает напряжение от 2 до 6 В между выводами A и B. Передатчик также имеет вывод C общей точки (провода) схемы. В отличие от интерфейса RS-232C общий провод здесь не используется для определения состояния линии данных, а применяется только для присоединения сигнального заземления. Если на выходе передатчика 2 < UAB < 6 В, то это соответствует логическому 0, а диапазон -6 < UAB < -2 В соответствует логической 1.

Рис. 14.4. Передатчик интерфейсов RS-422/RS-485:

а) - условное обозначение; б) - временная диаграмма выходного сигнала UAB

Линейный передатчик интерфейса RS-485 должен обязательно иметь вход управляющего сигнала «Разрешение». Назначение этого сигнала – соединять выходы передатчика с линейными выводами A и B. Если сигнал «Разрешение» находится в состоянии «Выключено» (обычно логический 0), то передатчик будет отсоединен от линии. Состояние отключения линейного передатчика обычно называют его третьим или Z-состоянием.

Дифференциальный приемник анализирует сигналы из линии связи, поступающие на его входы A и B. Если на входе приемника UA – UB = UAB > 0,2 В, то это соответствует логическому 0, если UA – UB < -0,2 В, то это логическая 1. Диапазон | UA – UB | < 0,2 В является зоной нечувствительности (гистерезисом), защищающей от воздействия помех. Линейный приемник также должен иметь вывод C общего провода схемы, чтобы выполнить сигнальное заземление.

Применение дифференциального метода передачи сигналов обеспечивает хорошую помехоустойчивость интерфейсов. Для аппаратной реализации интерфейса используются микросхемы приемопередатчиков (трансиверов) с дифференциальными входами/выходами, подключаемыми к линии, и цифровыми входами/выходами, подключаемыми к модулю UART микроконтроллера.

В интерфейсе RS-422 для организации дуплексного обмена (в двух направлениях) используются две отдельные пары проводов. На каждой паре может быть только по одному передатчику и до 10 приемников.

В интерфейсе RS-485 для организации полудуплексного обмена достаточно одной пары проводов, по которым ведется прием и передача сигналов с разделением по времени. В сети может быть много передатчиков и приемников (до 32 передатчиков, приемников или их комбинаций).

Максимальная скорость передачи данных по интерфейсам RS-422/RS-485 определяется множеством факторов: длиной и параметрами линии связи, параметрами приемников и передатчиков. Максимальная скорость передачи на коротких расстояниях (до 12 м) ограничивается быстродействием передатчиков и по стандарту равна 10 Мбит/с. На средних расстояниях (десятки и сотни метров) скорость передачи уменьшается из-за возрастания потерь в емкостях изоляции кабеля и активных сопротивлений проводов. Так, например, при длине линии 120 м максимальная скорость передачи не превышает 1 Мбит/с. Максимальная длина кабеля связи по стандарту ограничена величиной 1200 м, при этом скорость передачи не превышает 100 Кбит/с.

Достоинством интерфейсов RS-422 и RS-485 являются: дешевизна соединительных кабелей; дешевизна реализации трансиверов; большой парк работающего оборудования, реализующего эти стандарты; возможность организации гальванической развязки.

Недостатком интерфейсов является то, что они отсутствуют в стандартной комплектации компьютеров и микроконтроллеров. Интерфейсы имеют довольно значительное энергопотребление и относительно невысокую скорость передачи данных.

ИРПС – это стандартный интерфейс для радиального подключения устройств с последовательной передачей данных. Он применялся в выпускавшихся в СССР до 90-х годов прошлого века компьютерах для подключения различных периферийных устройств (принтеров, телетайпов). В настоящее время ИРПС широко используется в промышленной автоматике для связи между контроллерами, передачи информации от различных счетчиков, например, тепловой и электрической энергии. Международное название этого интерфейса – токовая петля (Current Loop – CL).

Способ последовательной передачи данных «токовая петля» заимствован из телеграфии. Два устройства (передатчик и приемник) соединяются двухпроводной линией, образующей замкнутую электрическую цепь (рис. 14.5). В передатчике размещается ключ К, который может размыкать цепь, а в приемнике – детектор тока ДТ, определяющий наличие или отсутствие тока в цепи. Кроме того, в эту цепь включается источник питания E и ограничивающий резистор RО. Резистор служит для получения стандартной величины тока, обычно 20 мА. Датчиком тока может служить обмотка электромагнитного реле. Логической 1соответствует протекание тока в линии связи, логическому 0– отсутствие тока в линии. В современных устройствах интерфейса ключи передатчиков и датчики тока в приемниках выполняются на основе электронных компонентов.

Рис. 14.5. Схема «токовой петли»

ИРПС позволяет осуществить дуплексную передачу данных импульсами постоянного тока асинхронным способом по 4-проводной линии связи.

Устройства, подключаемые к интерфейсу ИРПС, должны иметь в своем составе универсальный асинхронный приемопередатчик UART. В передающем устройстве UART формирует из параллельных данных кадр для асинхронной последовательной передачи на выходе TxD, а передатчик ИРПС преобразует его в импульсы постоянного тока, поступающие в линию связи. В приемном устройстве приемник ИРПС принимает токовые импульсы и преобразует их в сигналы ТТЛ-уровней на выходе RxD, которые поступают в UART.

Формат передаваемой информации в ИРПС аналогичен интерфейсу RS-232. Сообщения передаются кадрами. Кадр начинается старт-битом, затем идут 5,7, или 8 бит данных (начиная с младшего разряда), потом необязательный бит паритета (контроль на четность или нечетность), и в заключение 1 или 2 стоп-бита. Старт-бит всегда имеет уровень логического 0 (отсутствие тока в линии), стоп-биты всегда имеют уровень логической 1. Скорости передачи данных выбираются из того же ряда, что и для стандарта RS-232. Так как при отсутствии передачи в линии связи интерфейса должен протекать ток (логическая 1), то приемник может легко распознать обрыв линии: при этом принимаются одни нули. Также обрыв распознается приемником при передаче информации по отсутствию стоп-битв в кадре.

Стандарт ИРПС предполагает обязательное гальваническое разделение цепей передатчика и приемника. Это защищает оборудование, подключенное к интерфейсу, от электромагнитных помех, наводимых в проводах линии связи. По стандарту интерфейс ИРПС обеспечивает передачу информации со скоростью 9600 бит/с на расстоянии до 500 м. Возможно увеличить это расстояние до нескольких километров, но при этом пропорционально должна быть снижена скорость передачи. Поскольку интерфейс требует пары проводов для каждого сигнала, то обычно применяют две пары – принимаемые данные и передаваемые данные. В случае двунаправленного (дуплексного) обмена для управления потоком используется программный протокол XON/XOFF по аналогии с интерфейсом RS-232. Если применяется однонаправленный (симплексный) обмен, то используют одну линию данных, а для управления потоком обратная линия задействуется для передачи сигнала готовности приемника (аппаратный протокол, аналогичный RTS/CTS для RS-232) или для передачи кодов XON/XOFF от приемника (программный протокол).

Достоинствами интерфейса ИРПС являются: простота реализации; высокая помехоустойчивость; большая длина соединительного кабеля; в цепь передачи тока могут включаться несколько приемников и передатчиков.

Недостатками ИРПС являются: большая потребляемая мощность; недостаточная стандартизация применяемого оборудования; отсутствие готовых микросхем для реализации интерфейса.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]