
- •1. Дійсні числа. Числові множини.
- •2. Поняття множини. Операції над множинами.
- •3. Поняття множини. Властивості операцій над множинами.
- •4. Числова послідовність, підпослідовність.
- •5. Границя послідовності.
- •6. Основні властивості границь числових послідовностей.
- •7. Число .
- •8. Обчислення границь числових послідовностей.
- •9. Поняття функції
- •10. Классификация функций. Основные элементарные функции.
- •11. Загальне поняття границі функції в точці та його окремі випадки.
- •12. Основні властивості границь функцій.
- •13. Нескінченно малі та великі функції, їх порівняння та застосування. А) Сравнение бесконечно малых функций
- •B) Сравнение бесконечно больших функций
- •14. Дві істотні границі та наслідки з них.
- •15. Поняття неперервної функції та її властивості.
- •Глобальные
- •16. Односторонняя непрерывность
- •17. Точки разрыва функции и их классификация
- •18. Понятие производной и дифференциала
- •19. Дифференцирование сложной функции
- •20 Похідні та диференціали вищих порядків. Формула Лейбніца.
- •Формула Ньютона-Лейбница
- •21.Правила Лопіталя розкриття невизначеностей
- •22. Формули Тейлора та Маклорена.
- •23 Ознаки монотонності функції.
- •24. Екстремум функції.
- •Проте виявляється, що цього недостатньо, бо може , а функція в цій точці екстремуму не має.
- •Якщо в критичній точці, то нічого конкретного сказати не можна, бо в цій точці може бути екстремум, а може й не бути.
- •25. Умова опуклості або угнутості кривої.
- •26. Асимптоти кривої. Побудова графіка функції.
- •27. Застосування правил Лопіталя до обчислення границь функцій.
- •Тема 3. Диференціальне числення функції однієї змінної
- •28. Необхідні та достатні умови екстремуму функції.
- •29. Розкладення за формулою Маклорена деяких елементарних функцій.
- •31. Поняття первісної функції та невизначеного інтеграла. Таблиця основних інтегралів.
- •32. Основні методи інтегрування: метод розкладення, метод підстановки (заміни змінної) та метод інтегрування частинами.
- •33. Поняття визначеного інтеграла. Обчислення визначеного інтеграла.
- •34. Заміна змінної та інтегрування частинами у визначеному інтегралі. Застосування визначеного інтеграла.
- •35. Невласні інтеграли першого роду.
- •Невласні інтеграли першого роду ("нескінчений інтервал")
- •36. Невласні інтеграли другого роду.Невласні інтеграли
- •37. Ознака збіжності невласних інтегралів.
- •38. Поняття числового ряду та його суми.
- •39. Основні властивості рядів.
- •40. Критерій Коші збіжності ряду.
- •40. Критерій Коші збіжності ряду.
- •41. Ознаки збіжності додатних рядів: порівняння, д’Аламбера, Коші, інтегральна ознака Коші.
- •42. Функціональні послідовності та ряди.
- •49. Неперервність функцій декількох змінних
- •50. Частинні похідні функції декількох змінних.
- •51. Полный дифференциал функции нескольких переменных.
- •52. Означення подвійного та повторного інтегралів. Обчислення подвійного інтеграла.
- •53. Заміна змінних у подвійному інтегралі.
- •55. Криволинейный интеграл первого рода
- •56. Криволинейный интеграл второго рода
- •57. Производная по направлению. Градиент. Уравнение касательной плоскости к поверхности. Уравнение нормали
- •58. Екстремум функції двох змінних.
- •59. Найбільше та найменше значення функції багатьох змінних у замкненій області.
14. Дві істотні границі та наслідки з них.
(речь идет о двух замечательных пределах)
Первый замечательный предел
Следствия
Второй замечательный предел
или
Следствия
для
,
15. Поняття неперервної функції та її властивості.
Непрерывная функция — функция без «скачков», то есть такая, у которой малые изменения аргумента приводят к малым изменениям значения функции.
Этот термин используется в более узком смысле — для отображений между числовыми пространствами, например, на вещественной прямой.
Свойства
Локальные
Функция, непрерывная в точке
, является ограниченной в некоторой окрестности этой точки.
Если функция
непрерывна в точке и
(или
), то
(или
) для всех
, достаточно близких к
.
Если функции и
непрерывны в точке , то функции
и
тоже непрерывны в точке .
Если функции и непрерывны в точке и при этом
, то функция
тоже непрерывна в точке .
Если функция непрерывна в точке и функция непрерывна в точке
, то их композиция
непрерывна в точке .
Глобальные
Функция, непрерывная на отрезке (или любом другом компактном множестве), равномерно непрерывна на нём.
Функция, непрерывная на отрезке (или любом другом компактном множестве), ограничена и достигает на нём свои максимальное и минимальное значения.
Областью значений функции , непрерывной на отрезке
, является отрезок
где минимум и максимум берутся по отрезку .
Если функция непрерывна на отрезке и
то существует точка
в которой
.
Если функция непрерывна на отрезке и число
удовлетворяет неравенству
или неравенству
то существует точка в которой
.
Непрерывное отображение отрезка в вещественную прямую инъективно в том и только в том случае, когда данная функция на отрезке строго монотонна.
Монотонная функция на отрезке непрерывна в том и только в том случае, когда область ее значений является отрезком с концами
и
.
Если функции и непрерывны на отрезке , причем
и
то существует точка в которой
Отсюда, в частности, следует, что любое непрерывное отображение отрезка в себя имеет хотя бы одну неподвижную точку.
16. Односторонняя непрерывность
В
определении непрерывности функции в
точке х0 требуется существование
и равенство
.
С применением односторонних пределов
определяются понятия непрерывности
функции в точке слева и справа:
Опр.5.1.7.
Функция f(x) называется непрерывной в
точке х0 слева, если
.
Опр.5.1.8.
Функция f(x) называется непрерывной в
точке х0 справа, если
.
Опр.5.1.9. Если одно из этих условий не выполнено, то функция f(x) имеет в точке х0 разрыв, соответственно, слева или справа.
Если функция определена на отрезке [a,b], то в левом конце отрезка х0= a можно говорить только о непрерывности справа, в правом конце (х0= b) - о непрерывности слева. Для внутренней точки отрезка функция f(x) непрерывна в точке х0 тогда и только тогда, когда она непрерывна в этой точке слева и справа (доказать самостоятельно).