
- •1. Дійсні числа. Числові множини.
- •2. Поняття множини. Операції над множинами.
- •3. Поняття множини. Властивості операцій над множинами.
- •4. Числова послідовність, підпослідовність.
- •5. Границя послідовності.
- •6. Основні властивості границь числових послідовностей.
- •7. Число .
- •8. Обчислення границь числових послідовностей.
- •9. Поняття функції
- •10. Классификация функций. Основные элементарные функции.
- •11. Загальне поняття границі функції в точці та його окремі випадки.
- •12. Основні властивості границь функцій.
- •13. Нескінченно малі та великі функції, їх порівняння та застосування. А) Сравнение бесконечно малых функций
- •B) Сравнение бесконечно больших функций
- •14. Дві істотні границі та наслідки з них.
- •15. Поняття неперервної функції та її властивості.
- •Глобальные
- •16. Односторонняя непрерывность
- •17. Точки разрыва функции и их классификация
- •18. Понятие производной и дифференциала
- •19. Дифференцирование сложной функции
- •20 Похідні та диференціали вищих порядків. Формула Лейбніца.
- •Формула Ньютона-Лейбница
- •21.Правила Лопіталя розкриття невизначеностей
- •22. Формули Тейлора та Маклорена.
- •23 Ознаки монотонності функції.
- •24. Екстремум функції.
- •Проте виявляється, що цього недостатньо, бо може , а функція в цій точці екстремуму не має.
- •Якщо в критичній точці, то нічого конкретного сказати не можна, бо в цій точці може бути екстремум, а може й не бути.
- •25. Умова опуклості або угнутості кривої.
- •26. Асимптоти кривої. Побудова графіка функції.
- •27. Застосування правил Лопіталя до обчислення границь функцій.
- •Тема 3. Диференціальне числення функції однієї змінної
- •28. Необхідні та достатні умови екстремуму функції.
- •29. Розкладення за формулою Маклорена деяких елементарних функцій.
- •31. Поняття первісної функції та невизначеного інтеграла. Таблиця основних інтегралів.
- •32. Основні методи інтегрування: метод розкладення, метод підстановки (заміни змінної) та метод інтегрування частинами.
- •33. Поняття визначеного інтеграла. Обчислення визначеного інтеграла.
- •34. Заміна змінної та інтегрування частинами у визначеному інтегралі. Застосування визначеного інтеграла.
- •35. Невласні інтеграли першого роду.
- •Невласні інтеграли першого роду ("нескінчений інтервал")
- •36. Невласні інтеграли другого роду.Невласні інтеграли
- •37. Ознака збіжності невласних інтегралів.
- •38. Поняття числового ряду та його суми.
- •39. Основні властивості рядів.
- •40. Критерій Коші збіжності ряду.
- •40. Критерій Коші збіжності ряду.
- •41. Ознаки збіжності додатних рядів: порівняння, д’Аламбера, Коші, інтегральна ознака Коші.
- •42. Функціональні послідовності та ряди.
- •49. Неперервність функцій декількох змінних
- •50. Частинні похідні функції декількох змінних.
- •51. Полный дифференциал функции нескольких переменных.
- •52. Означення подвійного та повторного інтегралів. Обчислення подвійного інтеграла.
- •53. Заміна змінних у подвійному інтегралі.
- •55. Криволинейный интеграл первого рода
- •56. Криволинейный интеграл второго рода
- •57. Производная по направлению. Градиент. Уравнение касательной плоскости к поверхности. Уравнение нормали
- •58. Екстремум функції двох змінних.
- •59. Найбільше та найменше значення функції багатьох змінних у замкненій області.
58. Екстремум функції двох змінних.
Понятие максимума, минимума, экстремума функции двух переменных аналогичны соответствующим понятиям функции одной независимой переменной (см. п. 25.4).
Пусть функция z = ƒ(х;у) определена в некоторой области D, точка N(x0;y0) D.
Точка (х0;у0) называется точкой максимума функции z=ƒ(х;у), если существует такая -окрестность точки (х0;у0), что для каждой точки (х;у), отличной от (хо;уо), из этой окрестности выполняется неравенство ƒ(х;у)<ƒ(хо;уо).
А
налогично
определяется точка минимума функции:
для всех точек (х; у), отличных от (х0;у0),
из -окрестности
точки (хо;уо) выполняется
неравенство: ƒ(х;у)>ƒ(х0;у0).
На рисунке 210: N1 — точка максимума, а N2 — точка минимума функции z=ƒ(x;у).
Значение функции в точке максимума (минимума) называется максимумом (минимумом) функции. Максимум и минимум функции называют ее экстремумами.
Отметим, что, в силу определения, точка экстремума функции лежит внутри области определения функции; максимум и минимум имеют локальный (местный) характер: значение функции в точке (х0;у0) сравнивается с ее значениями в точках, достаточно близких к (х0; у0). В области D функция может иметь несколько экстремумов или не иметь ни одного.
59. Найбільше та найменше значення функції багатьох змінних у замкненій області.
Рассматривается
множество
.
Если определено правило, по которому
каждой точке
ставится в соответствие некоторое число
(единственным образом), то говорят, что
на множестве D
определена (однозначная) функция
.
Как обычно, множество D
называется
областью определения функции, а множество
всех соответствующих значений u:
Q
= {u}
– множеством значений. Часто функцию
u
= F(x)
называют отображением
При n = 2 уравнение F(x,y) = C задает линии уровня поверхности z = F(x,y), а при n = 3 уравнение F(x,y,z) = С – поверхности уровня.
Задание
ФНП может быть неявным: F(x,u)
= 0 или параметрическим
.
Примеры .Поверхности 2 – го порядка.
Как и в случае одной переменной, определяется предел ФНП:
Вместо
условия
можно писать
.
Справедливы все общие свойства пределов: арифметические свойства, переход к пределу в неравенствах и т.д.
Тем не менее, понятие предела ФНП оказывается более сложным за счет того, что стремление т. х к хо может осуществляться большим числом способов, нежели в случае одной переменной.
Пример.
По аналогии с функциями одной переменной, вводятся бесконечно малые и большие величины и понятие непрерывности:
Функция
называется
бесконечно малой при
,
если
Функция
называется
бесконечно большой при
,
если
Функция
называется
непрерывной в т.
,
если
Функция непрерывна на множестве, если
она непрерывна в каждой точке этого
множества.
Остаются
верными все свойства непрерывных
функций: арифметические свойства,
теорема о сохранении знака. Теоремы об
ограниченности непрерывной функции, о
переходе через промежуточные значения
и о достижении максимума и минимума
формулируются для замкнутых областей.
Верна также теорема о непрерывности
сложной функции: пусть функция
непрерывна
в т. хо
, а функции
в т.
В этом случае функция