
- •3. Магнитостатика
- •3.1. Постоянное магнитное поле в вакууме лекции 8-9. Постоянное магнитное поле в вакууме
- •3.1.1. Опыты Ампера и Эрстеда
- •3.1.2. Магнитное поле токов. Вектор магнитной индукции . Силовые линии магнитного поля
- •3.1.3. Закон Био-Савара-Лапласа. Расчет индукции магнитных полей, создаваемых различными токами
- •3.1.3.1. Закон Био-Савара-Лапласа
- •3.1.3.2. Расчет индукции магнитных полей, создаваемых различными токами
- •Б) Поле бесконечно длинного проводника с током (рис.155)
- •В) Магнитное поле в центре кругового тока
- •Сила Ампера. Сила Лоренца. Движение заряженных частиц в магнитном и электрическом поле
- •Сила Ампера
- •3.1.4.2. Сила Лоренца
- •3.1.4.3. Движение заряженных частиц в магнитном и электрическом полях
- •3.1.5. Эффект Холла. Циклотрон. Магнетрон
- •3.1.5.1. Эффект Холла
- •3.1.5.2. Циклотрон
- •Магнетрон
- •3.1.6. Магнитный поток . Работа проводника с током в однородном магнитном поле
- •3.1.6.1. Магнитный поток
- •3.1.6.2. Работа проводника с током в однородном магнитном поле
- •3.1.7. Циркуляция вектора магнитной индукции (Закон полного тока). Поле тороида
- •3.1.7.1. Циркуляция вектора магнитной индукции
- •3.1.7.2. Поле тороида
- •3.1.8. Магнитный момент тока. Контур с током в магнитном поле
- •3.1.8.1. Магнитный момент тока
- •Контур с током в магнитном поле
- •Магнитное поле в веществе
- •3.2.1. Намагничивание вещества. Элементарная теория Ампера намагничивания вещества. Намагниченность магнетика
- •3.2.2. Напряженность магнитного поля. Циркуляция вектора (закон полного тока). Магнитная проницаемость
- •3.2.3. Граничные условия на границе двух магнетиков
- •3.2.4. Магнитное поле разомкнутой магнитной цепи
- •3.2.5. Расчет индукции магнитного поля в веществе. Поле бесконечно длинного проводника с током
- •3.14. Виды магнетиков и их свойства
- •3.14.1. Диамагнетики
- •3.14.2. Парамагнетики
- •3.14.3. Ферромагнетитки
- •3.15. Элементарная теория диа- и парамагнетизма
- •3.15.1. Теория диамагнетизма
- •3.15.2. Теория парамагнетизма
- •3.16. Гиромагнитное соотношение. Опыты Эйнштейна-де-Гааза и Барнетта
- •3.16.1. Гиромагнитное соотношение
- •3.16.2. Опыты Барнетта и Эйнштейна-де-Гааза
- •3.16.2.1. Опыты Барнетта
- •3.16.2.2. Опыт Эйнштейна-де-Гааза
- •3.17. Элементарная теория ферромагнетизма
- •3.18. Кривая намагничивания ферромагнетиков
- •3.2.11. Полная потеря энергии при перемагничивании ферромагнетика
- •3.2.12. Применение магнитных материалов
- •3.2.12.1. Применение магнитотвердых материалов
- •3.2.12.2. Применение магнитомягких материалов
- •4. Электромагнитные явления
- •Опыты Фарадея. Явления электромагнитной индукции
- •Закон электромагнитной индукции (з.Фарадея-Максвелла). Правила Ленца
- •4.2.1. Закон электромагнитной индукции
- •4.2.2. Правило Ленца
- •Вывод закона электромагнитной индукции (Фарадея-Максвелла)
- •Явление самоиндукции. Индуктивность
- •4.5. Токи при замыкании и размыкании электрической цепи
- •Взаимная индукция
- •4.7. Токи Фуко (вихревые) и их применение
- •4.8. Энергия магнитного поля. Энергия перемагничивания ферромагнетика
- •4.8.1.Энергия магнитного поля
- •Энергия при перемагничивании ферромагнетика
- •4.9. Вихревое электрическое поле. Первое уравнение Максвелла
- •4.10. Токи смещения. Второе уравнение Максвелла
- •4.11. Полная система уравнений Максвелла в интегральной форме
4.2.2. Правило Ленца
В законе электромагнитной индукции не говорится о направлении индукционного тока. Этот вопрос решил Ленц в 1833г. Он установил правило, позволяющее определить направление индукционного тока.
Индукционный ток имеет такое направление, что созданное им магнитное поле препятствует изменению магнитного потока, пронизывающего данный контур, т.е. индукционный ток. Он направлен так, чтобы противодействовать причине, его вызывающей. Например, пусть в замкнутый контур вдвигается постоянный магнит NS (рис.250).
|
Рис.250 Рис.251 |
С учетом правила Ленца, закон Фарадея-Максвелла запишется в виде
|
(567) |
Закон электромагнитной
индукции справедлив не только для
отдельного контура, но и для катушки,
состоящей из N
витков. Полный
магнитный поток, пронизывающий катушку,
определяется формулой
и называется
магнитным потокосцеплением.
Тогда формула (567) записывается в
виде
|
(568) |
Для решения физической задачи используют формулу (568).
Среднее по времени значение ЭДС индукции определяется формулой
|
(569) |
Магнитный поток определяется формулой
|
(570) |
Выясним способы изменения магнитного потока.
Первый способ. В=const и α=const. Изменяется площадь S.
П
ример.
Пусть в однородном магнитном поле
В=const
перпендикулярно силовым линиям движется
проводник длиной l
со скоростью
(рис.252) Тогда на концах проводника
возникает разность потенциалов
,
равная ЭДС индукции. Найдем её.
Изменение магнитного потока равно
|
(571) |
С учетом (571), (567) запишется в виде
|
(572) |
||
|
(573) |
||
где
|
|
||
|
|
||
Рис.252 Рис.253 |
|
В формуле (570) α - это угол между нормалью плоскости, омываемой при движении проводника, и вектором индукции .
Второй способ
изменения магнитного потока. В=const
S=const.
Изменяется
.
Пример.
Проводящая рамка вращается в однородном магнитном поле В=const (рис.253). Тогда магнитный поток равен
|
(574) |
ЭДС индукции:
|
(575) |
где
–
амплитуда ЭДС.
Третий способ изменения магнитного S=const, α=const. Изменяется магнитное поле B. Пример этого способа рассмотрим позже в разделе вихревого электрического поля.